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Abstract

The idea of backward error analysis is to assess the quality of a numerical
solution by regarding it as the exact solution of a nearby problem. This method
of error analysis was developed by Wilkinson in the context of numerical linear
algebra, and has been extended widely to other areas of numerical analysis.
The subject of this work is a reconsideration of the use of backward error
analysis for the numerical solution of ordinary differential equations, focusing
mainly on initial value problems. The three main types, viz. defect control,
shadowing, and the method of modified equations, are surveyed and algorithms
for implementing these methods are considered. The asymptotic relationship
between the local error, which is normally used to control the step-size of
variable step-size numerical methods for initial value problems, and the defect,
the difference between the specified problem and the problem exactly solved
by the numerical method, is considered. Finally, the advantages of using
backward error analysis when using ordinary differential equations to model
real world phenomena, including chaotic systems, are considered. In the light
of the omnipresence of physical and modeling error, the conditions under which
a numerical solution can be regarded as the exact solution to just as valid a
problem as the one originally posed are discussed.
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Chapter 1

Introduction

The concept of backward error analysis (BEA) was first fully developed in the

work of J. H. Wilkinson, the basic idea being to assess the quality of a numer-

ical solution to a specified problem by regarding the numerical solution as the

exact solution of a nearby problem. Although this type of analysis was used

in earlier work, particularly (Von Neumann & Goldstine, 1947), and discussed

explicitly by Givens (1954), it is Wilkinson that is given the credit (Fox, 1987)

for being the true innovator and developer of the method. Wilkinson’s first

detailed discussion of the method appears in (Wilkinson, 1963).

The original uses of BEA were in numerical linear algebra (see Wilkinson,

1971, for a discussion), but the method has found wide application in numerical

analysis, in areas such as function evaluation, solving of polynomial equations,

polynomial interpolation and the numerical solution of ordinary and partial

differential equations. The focus of the present work is the use of BEA in

the numerical solution of ordinary differential equations, with an emphasis on

initial value problems (IVP). Thus, we focus on error analysis for differential
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equations of the form

dy

dt
≡ ẏ(t) = f(y, t), y(t0) = y0, (1.1)

where y ∈ R
n, t ∈ R and f : Rn×R → R

n (f : Rn → R
n for autonomous prob-

lems), but we will consider results for other kinds of ODE, including problems

where the initial condition is replaced by boundary conditions or some alge-

braic condition, i.e., boundary value problems (BVP) and differential-algebraic

equations (DAE), and delay differential equations (DDE).1

The use of BEA in this area can be thought to trace back to Cauchy, with

his proof of error bounds for the local truncation error for linear interpolants

derived from Euler’s method (Birkhoff & Rota, 1989, 207). This is, to the best

of my knowledge, the first use of the defect to compute a bound on the global

error ‖y(t)−u(t)‖, where y(t) is the exact solution of the ODE (1.1) and u(t)

is an interpolant derived from the numerical solution yn = u(tn).

Definition 1.1 (Global Error) The global error of an interpolant u(t) of a nu-

merical solution to the ODE (1.1) is the difference

E(t) = y(t)− u(t)

between the exact solution y(t) to (1.1) and the interpolant. In some cases

‘global error’ is also used to refer to the norm ‖y(t)− u(t)‖ of the difference

between the two.

1Although DDE are strictly speaking a different class of problem, since they are infinite
dimensional, they still involve only ordinary derivatives and so are included in this list.
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Definition 1.2 (The Defect) The defect, or residual, is the quantity

δ(t) := u̇(t)− f(u, t). (1.2)

Since this implies that u̇(t) = f(u, t)+ δ(t), the defect is the amount by which

the numerical solution fails to satisfy the differential equation (1.1).

The notion of the defect is connected to the idea of BEA: because the defect

is the amount by which the numerical solution fails to satisfy the differential

equation, it is also the difference between the original equation (1.1) and the

equation solved exactly by the numerical method (see section 2.1). Although

the defect has a long history, the first use of BEA proper took place when

Wilkinson’s ideas were consciously extended into the numerical solution of

ODE. Chapter 2 provides a survey of the development of BEA for ODE. A

survey of particular numerical methods for BEA is provided in chapter 3.

The general idea of BEA can be understood by thinking of a mathemati-

cally posed problem as a map f from a data space D to a solution space S. A

schematic diagram of this picture is provided in figure 1.1. Given the specified

data x ∈ D for a specified problem f , the problem maps it to its exact solu-

tion y = f(x) ∈ S. Since the exact solution is usually not available, however,

one often uses a numerical method to obtain an approximate solution ŷ to the

specified problem. This approximate solution ŷ will be some distance ∆y away

from the exact solution y.

Definition 1.3 (Forward Error) Let y be the exact solution to a problem f and

ŷ be an approximate solution. The difference ∆y = ŷ− y is the forward error.
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We usually want the forward error to be small since we usually seek the exact

solution y to the specified problem f . But we are rarely able to calculate

or estimate the forward error directly, since in general we know very little

or nothing at all about the exact solution y. Rather than focusing concern

on the forward error, the shift in thinking in BEA is to consider how large

a perturbation ∆x of the data x is required so that the numerical solution

ŷ is the solution of the specified problem f with the perturbed input data

x̂ = x+∆x.

Definition 1.4 (Backward Error) Let ŷ be an approximate solution to a problem

f with specified data x. Then the backward error is the amount ∆x that the

data x must be varied in order for ŷ to be the exact solution of f with data

x̂ = x+∆x.

Unlike the forward error, the backward error can often be calculated or esti-

mated. Thus, the strategy is to reflect back consideration of the forward error

into a consideration of the backward error. Now, the diagram in figure 1.1

commutes. So, this enables us to view the approximate solution ŷ to specified

problem as the exact solution to a modified problem f̂ , the diagonal map. The

guiding idea of BEA is that if the backward error is small, then the numerical

solution is the exact solution to a nearby problem.

In some cases, including the present case of ODE problems, it is appropriate

to consider the data space D as a space of problems (or equations); in such

cases the perturbed input x̂ is understood to be the modified problem (or

equation) that is solved exactly by the numerical method. In the context of

ODE problems the map f is the problem ‘solve a system of ODE,’ and the
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x

x̂ = x+∆x

‖∆x‖

y = f(x)
f

ŷ = f(x̂)f

f̂ ‖∆y‖

Figure 1.1: Schematic representation of backward error ∆x and forward error ∆y.

diagonal map f̂ is the problem ‘solve a perturbed system of ODE.’ It is because

we are interested in the perturbed system x + ∆x as a modified model, and

the size of the perturbation ∆x as a perturbation of the specified model, that

we consider the the data space as a space of problems.

One of the main advantages of BEA in general is that it allows one to

assess the quality of the solution to a problem without knowing what the exact

solution is—one knows that if the backward error is small and that the relevant

quantities in the model vary continuously under perturbation, then one has a

valid solution.2 If, in addition, one desires an applicable or a useful solution,

then one also requires a knowledge of the conditioning of a problem, i.e., how

sensitive the solution to a problem is to a variation of the problem itself. In

the general picture above, the conditioning of the problem is determined by

how sensitive the solution y to a problem f is to variations in the data x.

Definition 1.5 (Conditioning) Let f be a problem with specified data x and

solution y. Then, f is well-conditioned if small changes in the data x lead only

to small changes in the solution y, and f is ill-conditioned if small changes in

2For a careful definition of the term ‘valid’ in this context see Stetter (2004).
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the data x lead to large changes in the solution y.

The conditioning of a problem is usually characterized by a condition num-

ber, which characterizes how much perturbations of the data are ampified in

their effect on the solution. In the general picture above an example of a

condition number κ of a problem f is

κ = sup
relative change in solution

relative change in data
= sup

x∈D⊆D

‖f(x̂)− f(x)‖/‖f(x)‖
‖x̂− x‖/‖x‖ .

So we see that the condition number is like a derivative, measuring (the max-

imum over some data range D ⊆ D of interest of) the rate of change in the

solution for a given change in the data.

As an example, in the case of linear systems Ax = b it is well-known that

the condition number is the product of the norms of the matrix A and its

inverse, making it easy to estimate or calculate. With an estimate of the

condition number κ, one knows that if the backward error (BE), i.e., the

residual, is small and the condition number is small, then the forward error

(FE) is also small, since

‖FE‖ / κ · ‖BE‖.

The situation in the case of ODE is similar. Obtaining a condition number for

ODE is more involved, but is possible using results from variational calculus.

The conditioning of ODE problems is known in the differential equations

literature using the terminology of stability properties of solutions of differ-

ential equations. The notion of stability coming from the dynamical systems

context has to do with stability of solutions under perturbations, e.g., how
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much a solution will change if the initial condition is varied slightly. Thus,

stability in the dynamical systems context means something like the notion

of conditioning from numerical analysis. This kind of stability may be called

dynamical stability. This is not to be confused with the notion of numeri-

cal stability that arises in the numerical analysis context. Numerical stability

applies to algorithms, where an algorithm is numerically stable if it reliably

produces a solution with small (backward) error for the range of inputs of

interest. See table 1.1.

dynamical systems numerical analysis

dynamical stability conditioning
— numerical stability

Table 1.1: There is an analogy between dynamical stability and conditioning, but there is
no correlate of numerical stability in the context of dynamical systems.

Chaotic systems offer a clear example of the connection between dynam-

ical stability and conditioning. The instability of chaotic dynamical systems

is seen in the characteristic (on average) exponential divergence of solutions

with slightly different initial conditions. This instability translates to an ill-

conditioning of the problem since the result of a small variation in the initial

conditions, due to roundoff error, and a small variation in the dynamics, a

small defect, is that the solution produced by the computer usually diverges

exponentially fast from the exact solution to the specified problem. Thus,

even though the backward error is small the global error will be very large

after running the integration for a nontrivial length of time.

This connection between dynamical stability and conditioning can be made



8

more precise in the following way. Given equation (1.2) for the defect we may

see that the interpolant u(t) of the numerical solution yn satisfies the equation

u̇ = f(u, t) + δ(t), u(t0) = y∗0 (1.3)

exactly, where y∗0 is the closest machine number to y0. We now wish to perturb

the problem about the solution u(t). Suppose that y(t) solves the original

system (1.1) exactly. Then we have (e.g., Corless, 1992b, 332) that

y(t) = u(t) + εy1(x) + O(ε2), (1.4)

where y1(t) is the solution to the first variational equation

ẏ1 = Jf(u(t), t)y1(t) + v(t),

where Jf(u, t) is the Jacobian of the vector field f(u, t) and δ(t) = εv(t),

‖v(t)‖ ≤ 1, ε≪ 1 (these equations ensure that the defect is a small perturba-

tion of the original problem, see section 2.1 for more). This equation has the

solution

y1(t) = Λ(t)Λ−1(t)y1(t0) +

∫ t

t0

Λ(t)Λ−1(τ)v(τ)dτ, (1.5)

where Λ(t) is a fundamental solution matrix of the homogeneous version of the

first variational equation.3 From (1.4) we see that (to first order) εy1(t) is the

global error, so that equation (1.5) shows that the global error is determined

by an integral of the defect (εv(t)) multiplied by the fundamental solution

3Corless (1992b, 332) points out that this matrix can be computed to O(ε) or better.
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matrix and its inverse. Thus, the quantity

κ(t) =

∫ t

0

‖Λ(t)Λ−1(τ)‖dτ

is a condition number for ODE, since for ‖v(t)‖ ≤ 1 and ε ≪ 1, we have

(Corless, 1992b, 329) that (over a finite time period [0, T ] and if y1(0) = 0)4

|y(t)− u(t)| ≈ ε|y1(t)| ≤ κε.

Now, the connection to dynamical stability is made since the fundamental

solution matrix Λ(t) actually characterizes the dynamical stability properties

of the system. For perturbations of the initial condition or the vector field

f of the equation, the norm of the fundamental solution matrix determines

the rates at which exponential growth or decay of the distance between solu-

tions occurs. More specifically, the fundamental solution matrix determines

the Lyapunov exponents (Shimada & Nagashima, 1979, 1606-7). Thus, the

dynamical stability of the differential equation is directly tied to the notion of

the conditioning of the problem by the fundamental solution matrix.

A more general form of equation (1.5) is given by the Alekseev-Gröbner

4This is not the only condition number that one can define here. Generally, the condition
number depends on the range of initial conditions one is interested in and the time period
of interest. One could, therefore, use the integral over the entire domain of interest, as is
done in Ascher et al. (1988). Treating the condition number as a function has advantages,
however, since it enables one to determine for what times, or time ranges, the trajectory is
particularly sensitive to perturbations of the problem.



10

nonlinear variation of constants formula, i.e.,

y(t)− u(t) =

∫ t

t0

G(t, τ)δ(τ)dτ,

where G(t, τ) is a nonlinear analogue of the Green’s function characterizing

how the evolution of the system varies with variation of the initial conditions (a

more precise formulation is given in chapter 4). In many cases, using the first

variational equation the function G(t, τ) can be usefully approximated using

Jf , the Jacobian of the vector field f , making the linear stability properties of

the differential equation give useful information about how the defect connects

to the global error.

These results are a major part of the motivation for the use of defect control

methods, since they clarifiy the relationship between the defect and the global

error, and in a way that does not depend on the details of the problem at

hand. Nevertheless, most codes for IVP control the so-called local error in

order to indirectly control the global error, and these codes have proved to be

very successful in practice. There are two kinds of ‘local error’ that codes for

IVP can control, which are defined in terms of the local exact solution.

Definition 1.6 (Local Exact Solution) Let yn be the solution value to the IVP

(1.1) produced by a numerical method before the n-th time-step is taken. Then

the local exact solution is the solution zn(t) to the local IVP

żn(t) = f(zn, t), zn(tn) = yn, (1.6)

the same ODE as (1.1) but with initial condition zn(tn) = yn.
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The term local truncation error, or simply local error, is sometimes used to

refer to the local error per step and sometimes to the local error per unit step.

Definition 1.7 (LEPS) Let yn+1 be the solution value to the IVP (1.1) produced

by a numerical method after the n-th time-step hn. Then the local error per

step (LEPS) is the error quantity

ǫn+1 = zn(tn + hn)− yn+1,

where zn(t) is the local exact solution.

Definition 1.8 (LEPUS) Let yn+1 be the solution value to the IVP (1.1) pro-

duced by a numerical method after the n-th time-step hn. Then the local error

per unit step (LEPUS) is the error quantity

en+1 =
zn(tn + hn)− yn+1

hn
,

where zn(t) is the local exact solution.

We will use the term ‘local error’ in cases where we are not referring specifically

to one or the other of these two quantities.

From the backward error point of view, we would like to understand the

success of codes that control the local error because they indirectly provide a

control of the defect. In order to be able to understand the success of local

error control codes in this way, it is required to establish the precise nature of

the connection between the local error and the defect. Although it is difficult

to understand this connection, it is easier than connecting the local and global
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error. And it is useful to examine this problem because if local error control can

be understood to indirectly control the defect, which is a much more intuitive

notion than local error, then it will be much easier for users to understand

why the code works. This problem is considered in chapter 4 and some results

are presented.

Various kinds of physical and modeling error5 are always present in the

mathematical modeling of real world systems, which means that in the context

of modeling one must always examine how perturbations affect the specified

model. In light of this issue, BEA becomes a powerful tool for analyzing the

validity and applicability of numerical solutions to the specified model. The

connection between numerical error introduced by the numerical solution and

physical and modeling error is made clear using BEA since, under the right

conditions, it is possible to treat the effect of all forms of error in terms of

perturbations of the problem. The conditions under which this comparison is

valid are discussed in chapter 5.

Special issues come into play in the application of BEA to ill-conditioned

problems, specifically chaotic problems. In the case of chaotic problems BEA

actually works quite well, even though the instability of such problems makes

indirect control of the global error over nontrivial times impossible. The rea-

sons why BEA is advantageous on chaotic problems are discussed in section

5.1. This is followed by a brief concluding section considering the reasons for

the effectiveness of the various forms of BEA for ODE in the context of the

mathematical modeling of real world systems.

5For a conceptual clarification and discussion of physical and modeling error see chapter
2.
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Chapter 2

Backward Error Analysis for

Ordinary Differential Equations

The roots of BEA as applied to ODE reach as far back as the original work by

Wilkinson. Examples of early applications of BEA to ODE include Osborne

(1964) who treated a difference equation satisfied by the exact solution to

the specified problem as a perturbation of a difference equation obtained by

finite-difference approximation, and Fox & Mayers (1968) who analyzed the

stability of numerical methods for solving various problems, including ODE,

using BEA. There were a number of papers in the 70s that used BEA to

analyze the numerical solution of particular ODE problems. It was not until

the 80s and 90s, however, that theoretical studies of different approaches to

BEA for ODE were conducted and BEA became a common manner of treating

the error introduced by numerical methods for ODE.

In the consideration of error analysis for ODE, one must be mindful of the

various sources of error. Enright (2010) describes three potential sources of

error in the numerical solution of IVP (1.1). First there is modeling error. This

type of error is generated only in the formulation of the mathematical model,
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either because the exact equations of motion are either not completely known

or because they are too complicated to solve directly, so that the formulated

model only approximates the true dynamics. A simple way of representing

modeling error is where the actual system we are interested in is

ẋ(t) = g(x, t), x(t0) = y0,

with g unknown or too complicated, but ‖g(x, t) − f(x, t)‖ is small for the

range of values of (x, t) of interest. In this case the exact solution y(t) of (1.1)

satisfies

ẏ(t) = f(y, t)

= g(y, t) + µ(t), y(t0) = y0, (2.1)

where ‖µ(t)‖ = ‖f(y, t) − g(y, t)‖ is small for some norm relevant to the

problem.

Second there is floating point error. This type of error is generated only by

the floating point (FP) arithmetic system used, because the IVP is defined on

the computer by a subroutine that evaluates f(y, t). Each derivative evaluation

is computed in FP arithmetic and thus satisfies

yp = fl(f(y, t))

= f(y, t) + φ(t),

where ‖φ(t)‖ depends on f , the code for the subroutine that evaluates it, and
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the FP system used. ‖φ(t)‖ is a small multiple of ‖f‖ρ, where ρ ≈ 10−15 for

double precision IEEE FP systems (Enright, 2010, 5).

Third there is discretization or truncation error. This type of error is

generated only by the numerical method, because most IVP do not admit

closed form solutions and so an approximation amenable to solution using a

computer must be used. Most software for the solution of IVP provides a

continuous (at least piecewise C1, but sometimes C1 or smoother) interpolant

u(t) of the numerical approximation on the integration interval [t0, T ] which

satisfies

u̇(t) = f(u, t) + φ(t) + τ(t), u(t0) = y∗0,

where y∗0 is the closest FP number to y0, since the numerical method actually

solves the problem v̇ = f(v, t)+φ(t), v(t0) = y∗0. The numerical method often

tries to ensure that ‖τ(t)‖ / Cε, where ε is some user-specified tolerance and

C is a constant close to 1. Note that this implies that the defect δ(t) calculated

from the interpolant u(t) by a computer is equal to τ(t), which will be much

larger in norm than φ(t) provided that the tolerance ε is not too close to the

machine epsilon and the subroutine used to compute f is numerically stable.

A fourth kind of error that is not mentioned by Enright, but is nevertheless

important to consider when using numerical solution of differential equations

to model real world systems, is physical error. This type of error is generated

only by physical interactions between the system being modeled and its envi-

ronment, either because of actual physical perturbations of the system being

modeled or error introduced in the measurement of parameters in the model.
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Thus, the complete description of the system being modeled is of the form

ẋ(t) = g(x, t) + π(t),

where generally ‖π(t)‖ ≪ ‖y(t)‖.

The line that is drawn between physical error and modeling error will

depend on the theory or theories being used and the modeling assumptions in-

volved. To clarify the difference between modeling and physical error consider

the usual application of classical mechanics to generate a macroscopic model

of the simple pendulum system (consisting of a bob, a string, and the pivot):

θ̈ = −g
ℓ
sin θ,

where g is the gravitational acceleration at the earth’s surfce, ℓ is the length of

the string, and θ is the angle made between the string attached to the swinging

bob and the vertical. The modeling assumptions include idealizing the bob

as a point mass, assuming the string does not stretch and is massless, and

assuming no friction at or movement of the pivot. These modeling assumptions

introduce modeling error by taking one away from more accurate macroscopic

classical models of the simple pendulum system, which relax some or all of

the above idealizing assumptions.1 Further modeling error is introduced when

mathematical methods are used to generate a simplified model that is more

1Note that relaxing these assumptions can result in an increase of the dimensionality of
the model. Thus, the modeling error would be determined by the difference between the
simpler model and an appropriate projection of the more complex model into a space of the
same dimension as the simpler model.
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tractable. This would include the usual technique of linearizing the equation,

as well as dimensional analysis and perturbation theory.

Now, the physical error in this case includes physical perturbations of the

actual pendulum being modeled due to interactions between the pendulum

system (bob, string, pivot) and neighbouring systems outside the scope of the

pendulum system. This could include, for example, vibrations of the pivot

due to a neighbouring freeway as well as the effect of air resistance on the bob

and string. Now, by changing what we count as the system being modeled,

we change what counts as modeling error and as physical error. For example,

as soon as we include the effect of air resistance into the model, the air in

the vicinity of the pendulum becomes part of the system being modeled, and

the the actual effect of the air resistance as could be modeled using classical

mechanics (compared to an idealized model of air resistance) becomes modeling

error and not physical error. Although the distinction between modeling and

physical error can be difficult to determine, the distinction nevertheless serves

to separate the effect of modeling and mathematical idealizations from the

effect of physical perturbations.

Let us now consider the consequences of this point of view for error analysis.

The model of the system of interest is given by

ẏ(t) = g(y, t), y(t0) = y0. (2.2)

Letting γ(t) = µ(t) + ν(t), where ν(t) = φ(t) + τ(t) is the numerical error, we

can interpret the three sources of error involved in the solution of the model
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of the system of interest in terms of perturbations of the ODE of interest:

u̇(t) = g(u, t) + γ(t), u(t0) = y∗0. (2.3)

Notice that γ(t) is the defect between the model problem (2.2) and the problem

(2.3) solved exactly by the numerical method. This equation emphasizes that

by taking a backward error point of view, the analysis of error is reduced to the

issue of how small perturbations affect the problem of interest. In cases where

one is interested in the actual phase trajectory of the physical system being

modeled, the main question one wishes to address is the relationship between

the size ‖γ(t)‖ of the perturbation and the size ‖y(t) − u(t)‖ of the (global)

error, the pointwise difference between the exact solutions of the model and

perturbed equations. Now, analyzing the problem by considering the defect

γ(t) would be difficult to do directly in practice because g(y, t) and µ(t) are

usually not known or cannot be calculated. An advantage of BEA is that the

problem can usefully be analyzed by considering the size of the defect τ(t),

which can be calculated by a computer used to obtain the numerical solution of

v̇(t) = f(v, t)+φ(t), v(t0) = y∗0, the (simplified) version of the model problem

seen by the computer.2

To see why we can usefully consider ‖τ(t)‖ it is important to recognize that

the actual physical situation is described by a perturbed version of the original

model, because any physical system is subject to perturbations, which may be

very small. Consequently, the actual physical situation will be modeled by the

2It is a simplified version of the model problem because the vector field f(v, t) = g(v, t)+
µ(t) is the result of the idealizations and simplifications that introduce the modeling error
µ(t).
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problem

ẋ(t) = g(x, t) + π(t), v(t0) = y0 + π0. (2.4)

Thus, we may now see that equations (2.4) and (2.3) emphasize the manner

in which the error introduced in the solution of a problem can be treated on

a par with physical perturbations. Understanding the situation this way, we

see physical perturbations shake the system off of the original problem (2.2),

so that the original problem is a modified version of the problem that actually

tracks the behaviour of the physical system. Thus, both physical error on the

one hand, and modeling and numerical error on the other, shake the system off

of the original model problem. Consequently, the consideration of how small

perturbations affect the model problem is essential whenever one is modeling

real world phenomena. The essential point here, however, is that the presence

of physical perturbation means that, if the original problem is to be any use in

applications, the exact solution of any problem sufficiently close to the original

problem will also be a valid solution to the original problem.

Now, to make the connection to why we may focus on the defect τ(t),

consider the following. Assuming that ‖µ(t)‖ is very small, i.e., that the posed

model captures the dominant behaviour of the system being modeled, then as

long as ‖ν(t)‖ is small, one knows that one has a high quality solution, or

that an exact solution to (1.1) is valid. Also, we wish to ensure that ‖φ(t)‖ ≪

‖τ(t)‖ so that floating point error does not interfere with numerical solution

and the calculation of the defect. So, τ(t) dominates perturbation of (1.1).

With tight tolerances and high order methods we can usually ensure that

‖τ(t)‖ < ‖π(t)‖ for the largest sources of physical error, so the numerics are
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perturbing the problem to a lesser degree than physical perturbations are (for

some suitable norm depending on the problem). So, we know that the exact

solution we obtain to (2.3) must also be valid. If, in addition, τ(t) modifies the

problem (2.2) in a manner that is similar to how π(t) modifies the problem,

i.e., if the numerical error perturbs the problem in a similar way that physical

perturbations do, then one knows that one has exactly solved a problem that

is just as valid as the model of interest. The ability to treat numerical error

on a par with physical perturbation, enabling the use of the powerful general

methods of perturbation theory, and the ability to regard the problem exactly

solved by a numerical method as just as valid as the one originally posed,

enabling us to get just as much insight from the numerical solution as we

would get from the exact solution to the original problem, are two major

advantages of the backward error point of view. This is discussed further in

chapter 5.

There are three main varieties of BEA in the contemporary literature,

which work by modifying the differential equation, the conditions on an equa-

tion, or both. The first is defect analysis, which works by modifying the

equation and holding the conditions fixed. This is the most natural kind of

BEA for ODE and the point of view that has been emphasized so far. The nu-

merical method is understood to exactly solve an equation that differs from the

specified one by just the defect (1.2), which is regarded as a non-autonomous

perturbation of the specified ODE (1.1).3 The defect is most often encoun-

3The defect can be regarded as an autonomous perturbation of the ODE by increas-
ing the dimensionality of the system by one using the standard method for converting a
non-autonomous system into an equivalent autonomous one, i.e., by setting xn+1 = t and
adjusting the equations of the system accordingly.
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tered in the context of defect control, where the size of the norm of the defect,

for a suitable norm, often the max norm, is controlled by a numerical method.

Numerical methods using defect control use an interpolant of the emerging

solution of a numerical method to estimate or compute the defect, which is

then used to control the step-size of the numerical method. This kind of error

analysis is particularly useful when the problem is subject to a non-negligible

amount of physical or modeling error, so that the specified DE ought to be re-

garded as approximate anyway, and so the consideration of a modified problem

that we can solve exactly is entirely justified.

The second variety of BEA for ODE is shadowing, which works for IVP

by modifying the initial conditions of a problem while leaving the equation

(1.1) fixed. The main task in shadowing is to show that the numerical method

follows an exact solution of the specified problem with perturbed initial con-

ditions for some period of time. This kind of analysis is much more involved

than in defect control. Since the differential equation is being held fixed, the

method is more suited to problems where the equations of motion are very

well-known and/or the physical and modeling error are negligible, so we are

interested in exact solutions to the original problem and so the consideration

of a modification of the DE is less justified.

The third variety is the method of modified equations, which works by

modifying both the equation (1.1) and the conditions on it. This approach

uses both the specified equation and the equations defining the numerical

method to determine the equations and conditions of a modified problem,

the solutions of which are followed more closely by the numerical solution
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than the solutions of the specified one. Although the method of modified

equations is not always considered a form of BEA, its application enables one

to explain the behaviour of a numerical method in terms of a consideration of

a nearby problem, which makes it very much in the spirit of BEA. Moreover,

defect analysis can actually be considered as a special case of the method of

modified equations, namely where the equation is subject to a non-autonomous

perturbation and the conditions of the problem are held fixed. Thus, the

method of modified equations is perhaps better regarded as a generalization

of defect analysis and, hence, very much a form of BEA.

Although these three varieties of BEA tend to be considered on their own,

combinations of these methods are also possible; indeed, the various meth-

ods can complement each other. For example, Corless (1994a) combines the

method of modified equations and defect control in an analysis of the numerical

solution of chaotic dynamical systems. We will consider this type of analysis

in section 5.1.

We now turn to examine the main developments for the three varieties of

BEA for ODE.

2.1 Defect Control

With a piecewise interpolant u(t) of the solution yn of a numerical method in

hand, one can compute the defect

δ(t) := u̇(t)− f(u, t) = εv(t),
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where ẏ(t) = f(y, t) is the original ODE, and ε is a small parameter, which

is a user-specified tolerance for defect controlled methods. An example of this

kind of calculation using piecewise cubic Hermite interpolation is provided in

section 3.1. Rewriting this as

u̇(t) = f(u, t) + εv(t), (2.5)

we see that provided that ‖v(t)‖ < 1 for some suitable norm suggested by

the problem, then the numerical method exactly solves an ε-nearby problem.

Depending on the problem it may be more appropriate to consider the relative

defect

u̇ = f(u, t)(1 + εv(t)),

or the defect4 relative to u

u̇ = f(u, t) + εv(t)u.

Part of the rationale for defect control is that the relationship of the defect

to the global error much less sensitive to the method used as compared to the

local error (for more on this see chapter 4). As mentioned above, controlling

the defect enables the user to have a better understanding of how the specified

tolerance relates to the global error of the numerical solution, through the

Alekseev-Gröbner formula, which will be discussed in greater detail below (see

chapter 4 for a statement of the Alekseev-Gröbner theorem). This makes it

4Note that in this case δ = δ(u, t).
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much easier for the user to interpret the results of a computation, and the

result of keeping the size of the defect below the specified tolerance. A further

advantage of defect control, particularly when using methods that bound the

defect rather than estimate it, is that it enables one to regard the solution

generated by a numerical method as just another step in the simplification

process used to obtain an exact solution.

The first advocate for the use of defect for practical error control was

Zadunaisky (1966). This work was in the context of defect correction, i.e.,

where the solution is improved by using an iterative method to decrease the

defect, but the defect is used to provide a practical estimation of the error.

Among the first works on the use of the defect as a means of controlling the

global error are Hull (1968), Hull (1970) and Stetter (1976). Stetter (1976)

begins to address the important issue of establishing so-called ‘tolerance pro-

portionality,’ i.e., a (preferably) linear relationship between the user-specified

tolerance and the global error (for a more precise definition of tolerance pro-

portionality see chapter 4). Using a certain kind of piecewise differentiable

interpolant, in this paper he established tolerance proportionality for methods

such that the local error is demonstrably equal to the defect, except for terms

numerically small compared to the tolerance. Stetter’s approach uses a special

interpolant of the numerical solution and does not address the issue of how the

requisite sort of interpolant may be obtained. The details of Stetter’s main

result are discussed in chapter 4.

Another important issue to consider is the order of the interpolants that

one generates for a numerical method.



25

Definition 2.1 (Order of an Interpolant) Let un(t) be an interpolant of a nu-

merical solution yn of (1.1) over the n-th time-step. Then, the order of the

interpolant is the integer p such that

un(tn + θhn)− zn(tn + θhn) = hpnψ(tn, yn; θ) +O(hp+1
n ),

where θ ∈ [0, 1], zn is the local exact solution 1.6, and ψ(tn, yn; θ) is the prin-

cipal error term for the interpolant, which depends on the numerical method.

Thus, the order of an interpolant is the asymptotic rate of convergence of the

local error for the interpolant over the time-step as the step-size goes to zero.

A suitable interpolant must have an order equal to or higher than the order

of the numerical method. Enright et al. (1986) develop a general “boot-

strapping” method for extending a RK formula pair to include high-order

piecewise interpolants of computable accuracy. In their approach each of the

pair of methods generates an interpolant, which together are used to estimate

the error. They are then able to give an expression for the leading term

in the local error. They discuss how the defect might be used to estimate

the global error, using defect correction or the more standard technique of

integrating the variational equation associated with the problem, but point

out that the implementation of these techniques with their interpolants would

not be straightforward.

One of the first defect control methods for ODE was provided by Enright

(1989a). He introduces and justifies a defect control method for continuous

Runge-Kutta methods (CRK), which are Runge-Kutta formula pairs with in-
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terpolants. The control mechanism tries to ensure that

‖δ(t)‖∞ ≤ ε

over the entire interval of integration. The step is accepted if the above con-

dition is satisfied, and then the next step size is selected according to the

following heuristic:

hnew = hold

(

ν
‖En(h)‖

ε

)1/r

,

where ‖En(h)‖ = erh
r + O(hn+1) is an estimate of the size of the defect,

estimated by sampling k values of δ(x), and 0 < ν < 1 is a “safety factor.”

The control of the error using the defect estimate is regarded as an attempt to

control the maximum defect over the integration interval. Enright emphasizes

two large parts of the motivation for the use of defect control: that it is able

to produce methods for which the accuracy/ε relation is much less sensitive

to the particular method used; and it is much easier for a user to understand

and interpret than methods using local error control, because ensuring a small

defect ensures that you are solving a nearby ODE and that the backward error

is small. But there is a tradeoff between robustness and cost, so an important

consideration in the use of defect control is the balance of the accuracy of the

estimate of the defect (here depending on k) and the cost due to the derivative

evaluations per step: Better robustness takes more computing time.

In order to demonstrate the reliability and efficiency of the use of defect

control, as compared to the standard local error control, Enright (1989b) iden-

tifies and quantifies the effectiveness of quite natural and inexpensive defect
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control strategies. Specifically, he discusses four strategies that can be used

to control the size of the defect for continuous Runge-Kutta methods, two

of which involve local error control and two that involve defect control. The

asymptotic properties of the methods are analyzed and compared to show that

the defect control strategies, though more expensive, compare favourably with

local error control strategies. An asymptotically correct estimate of the de-

fect is provided for one of the defect-controlled methods, which enables more

accurate estimation of the maximum defect over a time-step.

Definition 2.2 (Asymptotically Correct Estimate) An estimate of the defect over a

time-step of a numerical method is asymptotically correct is if, asymptotically

(as h→ 0), the particular shape of the defect is known.

Enright (1993) compares the relative efficiency and reliability of a wider range

of continuous Runge-Kutta methods, of orders 4 to 8, including ones that are

less expensive than those of (Enright, 1989b). He also introduces theoretical

measures that can be used to evaluate the potential of such methods. Although

most of the defect control codes examined are continuous Runge-Kutta codes,

Higham (1989a) examines the problem of reliably estimating the defect for

variable-step, variable-method Adams codes.

The methods developed in Enright (1989a) and Enright (1989b) are not

particularly robust. The method in (Enright, 1989a) samples the defect at

one or more fixed points within each step, but the quality of the sample point

is problem-dependent and varies from step to step. Higham (1989b) develops

Enright’s method of defect control by presenting two interpolants for which the

asymptotic behaviour is known a priori, in that each component of the defect
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behaves asymptotically like a multiple of a known polynomial. This allows

optimal sample points to be chosen. Indeed, it becomes possible to construct

an asymptotically correct approximation to the defect over the entire step using

only a single sample value. Limitations of Higham’s methods are that they are

only applicable to low-order Runge-Kutta methods and they produce a defect

with a lower asymptotic order than is optimal. Higham (1991b) addresses

these limitations, obtaining methods applicable to Runge-Kutta methods of

any order, by introducing Runge-Kutta defect control using Hermite-Birkhoff

interpolation. More recently, Enright & Hayes (2007) achieve a balance of

cost and robustness for defect-controlled CRK methods. An important feature

of the codes provided is that they provide a user-friendly implementation of

direct defect control and code is provided both for FORTRAN and Matlab

addressing the important issue of the flexibility and usability of the code.

Although the methods developed by Higham (1989b, 1991b) and Enright

& Hayes (2007) provide asymptotically correct estimations of the defect, they

still only approximate the maximum value of the defect over the interval of in-

tegration. Corless & Corliss (1992), however, develop a defect control method

that uses interval arithmetic to guarantee a bound on the defect over the in-

terval of interest. This approach is complementary to that of Lohner (1987),

which involves computing an interval that is guaranteed to enclose the exact

solution of the specified problem.

As has been emphasized, part of the attraction of the use of defect control

is that it ensures that the solution produced by a numerical method is an exact
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solution to a nearby ODE. Although this is true in general,5 it is for this reason

that defect control is particularly attractive in the case of chaotic problems.

Corless (1992b) explains how for what he calls a ‘well-enough conditioned prob-

lem,’6 defect control gives useful solutions for chaotic problems. The sensitivity

of chaotic problems to variation of the initial conditions makes attempts to

control the global error futile, but control of the defect for well-enough condi-

tioned chaotic problems ensures that one obtains the exact solution to just as

valid a model as the one specified and that one can gain just as much insight

from the numerical solution as one would get from the exact solution. The

advantages of using backward error analysis for chaotic problems is discussed

in greater depth in section 5.1. For further details one may also see (Corless,

1994a) and (Corless, 1994b).

Defect control methods have also been developed for other classes of ODE.

It was suggested by Cash & Silva (1993) that monitoring the defect could

be appropriate for the solution of boundary value problems (BVP) for ODE

when there are difficulties in estimating the global error. Enright & Muir

(1996) went on to develop continuous mono-implicit Runge-Kutta (CMIRK)

methods used to estimate the defect for BVP, which compared favourably

with previous software packages. More recently, Kierzenka & Shampine (2001)

improved upon this work developing bvp4c, a defect-based BVP solver that

is now a standard component of the Matlab PSE. They are able to provide

inexpensive, asymptotically correct, estimates of the L2 and L∞ norms of the

5Aside from so-called stiff problems, for which the defect can be small but the global
error large, where defect control becomes prohibitively expensive or impractical. Part of the
reason for this is pointed out in chapter 4.

6The notion of a well-enough conditioned problem will be discussed in section 5.1.
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defect using a Lobatto quadrature formula. They also point out that that the

acceptance test on the size of the defect automatically takes into account how

well the collocation equations are satisfied. This is a distinct advantage of

defect-based methods for BVP.

Enright & Hayashi (1998) develop a generic approach using CRK to solve

retarded and neutral delay differential equations (DDE) using defect control.

They are able to show that the global error of the numerical solution is con-

trolled both efficiently and reliably by controlling the size of the defect and

using discontinuity detection. In (Enright & Hayashi, 1997), they present a

method DDVERK that implements their approach. A more recent package

for DDE using defect control is ddesd developed by Shampine (2005), which

is now part of the Matlab PSE. ddesd does not solve neutral DDE and does

not track discontinuities, but it is robust and accurate and it has a much sim-

pler interface than DDVERK. It also includes the capability to deal with event

location and restarts of the integration.

Most of the backward error approaches to the numerical solution of differential-

algebraic equations (DAE) have used the method of modified equations (see

section 2.3), but two recent Ph.D. theses from the University of Toronto,

Nguyen (1995) and MacDonald (2000), have considered the use of defect con-

trol for DAE. Nguyen (1995) considered, among other things, defect-based

error control strategies suitable for classes for index 2 and index 3, where

the index is the number of derivative evaluations of the equation defining the

problem required, semi-explicit DAE. MacDonald (2000) implements a ‘least

squares’ CRK method that provides a continuous approximation for the so-
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lution of the DAE without assuming that the problem has a special form or

that the index of the problem is known. He investigates and justifies a defect

control and stepsize choosing strategy based monitoring and bounding the

defect.

2.2 Shadowing

Let y(t) be the exact solution to an IVP

ẏ(t) = f(y), y(t0) = y0.

A numerical method will produce a sequence yn of discrete points representing

approximations to y(tn), where tn+1 = tn + hn. Such a sequence is called

a pseudo-trajectory. Let u(t) be a piecewise differentiable interpolant of the

pseudo-trajectory yn. The idea of shadowing is to show that there exists an

exact solution s(t) (the shadow) that remains uniformly close to the pseudo-

trajectory interpolant u(t) but having a slightly different initial condition, i.e.,

ṡ(t) = f(s(t)), ‖s(t)− u(t)‖ < ε,

for a nontrivial time interval [t0, T ].

Consider, for simplicity, a fixed time-step h. Since a numerical method

produces an approximation to a discrete orbit of the evolution homeomorphism

ϕh, or time h flow, of an ODE rather than a continuous solution,7 the numerical

7Whether or not ϕh is a diffeomorphism depends on the smoothness of the vector field
f .
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solution yn is considered a δ-pseudo orbit.

Definition 2.3 (δ-Pseudo Orbit) A numerical solution yn to (1.1) is a δ-pseudo

orbit, or a noisy orbit, if

‖yn+1 − ϕh(yn)‖ ≤ δ, i ≤ n ≤ j,

where δ is the noise amplitude. Thus, a δ-pseudo orbit is δ away from being

an exact orbit of ϕh, or that the local error per step is less than δ.

Shadowing results involve showing an exact orbit ε-shadows a pseudo-trajectory.

Definition 2.4 (ε-Shadowing) An exact orbit xn of ϕh, i ≤ n ≤ j, ε-shadows a

pseudo-trajectory, if

‖yn − xn‖ ≤ ε, i ≤ n ≤ j.

Shadows of a pseudo-trajectory may only exist for a period of time, and a

pseudo-trajectory is said to have a glitch if a shadow only exists for a finite

amount of time.

Definition 2.5 (Glitch) A pseudo-trajectory is said to have a glitch at some point

n = G if there is some relevant ε such that an exact trajectory xn ε-shadows

yn for i ≤ n ≤ G but no such exact trajectory exists for n > G.

Rarely can it be rigorously proved that such a glitch has occurred,8 since in

practice it is possible that what appears to be a glitch is just a failure of

8This may be done, for example, by showing that the numerical method produces points
that are outside of the domain on which ϕh acts.
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the given method to find a shadow. For this reason, Hayes (2001) suggests

that a failure of the method should be called a soft glitch and and the actual

nonexistence of a shadow called a hard glitch.

Anosov (1967) is credited with originating the shadowing technique. In

that paper he showed for hyperbolic systems on compact manifolds that for

any ε > 0 there is a δ > 0 such that every infinite-length δ-pseudo orbit

remaining in an invariant set S of a map ϕ is ε-shadowed by a true trajectory

in S.

Definition 2.6 (Hyperbolic System) A dynamical system is hyperbolic if all so-

lutions to the variational equation can be divided into two classes, those that

contract exponentially and those that expand exponentially.9

Bowen (1975) proved a general shadowing result for hyperbolic sets of diffeo-

morphisms, which was extended by Franke & Selgrade (1977) for hyperbolic

sets of vector fields. Odani (1990) proved a shadowing result for generic home-

omorphisms ϕ on compact differentiable manifolds of dimension 3 or smaller.

Definition 2.7 (Generic Property) A generic property on a topological space is

one that holds on a dense open set, or more generally on a residual set, where

a set is residual if it is the intersection of countably many sets with dense

interiors.10

9A more technical definition is the following. A subset X of the phase space of a dy-
namical system has a hyperbolic structure with respect to a smooth vector field f if the
tangent space at each point in X can be decomposed into the direct sum of two invariant
subspaces, one stable and one unstable. A similar definition applies for ϕ a diffeomorphism
on a compact smooth manifold.

10If a topological space is a Baire space then every residual set is dense. Thus, from the
Baire category theorem, residual sets are dense for every complete metric space and every
locally compact Hausdorff space.
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Although the hyperbolicity conditions required are quite involved, Chow &

Van Vleck (1992) prove a similar theorem where the map ϕ can change at

each step, which therefore has consequences for variable step-size methods.

Most systems in practice are not uniformly hyperbolic, though many have

enough hyperbolicity along trajectories in the vicinity of the pseudo-orbit so

that finite-time shadowing results can be proved. Systems that have this

property are called pseudo-hyperbolic.

Definition 2.8 (Pseudo-Hyperbolic System) A dynamical system is pseudo-hyperbolic

if some portion of the phase space has a hyperbolic structure, viz., if for some

period of time the solutions to the variational equation can be divided into

exponentially contracting solutions and exponentially expanding solutions.

Such finite-time shadowing was demonstrated for the logistic and Hénon map

by Hammel et al. (1987). Coven et al. (1988) and Nusse & Yorke (1988) also

consider 1-dimensional maps. Hammel et al. (1988) considers 2-dimensional

maps. A general finite-time shadowing result for maps was proved by Chow

& Palmer (1991, 1992).

Although the initial studies came from the dynamical systems literature

and did not specifically consider systems of ODE, Coomes et al. (1994b) prove

a finite-time shadowing result for systems of autonomous ODE. Eirola (1993)

is an early study of shadowing methods in the context of one-step methods ap-

plied to ODE over infinite-time lengths. Results are proven for linear systems

and for solutions in the vicinity of hyperbolic steady-state solutions. Also,

Corless & Pilyugin (1995) showed that generic systems of ODE on compact

smooth manifolds of arbitrary dimension have a slightly weaker tracing prop-
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erty than the pseudo-orbit tracing property, viz., that the computed trajectory

of the modified problem is contained in an ε-neighbourhood of some trajectory

of the specified problem.

Since, in general, systems are not hyperbolic, in practice we only expect

to establish finite-time shadowing results. The first studies of shadowing for

nonhyperbolic systems of are due to Hammel et al. (1987, 1988) for chaotic

maps, as mentioned above, and Grebogi et al. (1990) for chaotic systems of

ODE. The motivation of these papers is to show that shadows exist for non-

trivial periods of time in chaotic dynamical systems, even though roundoff

error ensures that the computed trajectory differs significantly from the exact

one after a small number of iterations of a numerical method. The method

they use consists of two parts: refinement, where one uses an iterative method

similar to Newton’s method to refine a noisy trajectory to produce a nearby

trajectory with less noise; and containment, where one can prove the existence

of an uncountable number of nearby exact trajectories. Refinement is impor-

tant since the less noisy the trajectory the longer a shadow can be shown to

exist. The algorithm is discussed in section 3.2.

Now, for dynamical systems in general it is sufficient to demonstrate the

existence of a shadow, i.e., the existence of an ε-nearby true orbit with different

initial conditions. In the context of ODE, however, this is insufficient, since it

matters not only that the computed pseudo-trajectory follows the path of a true

trajectory but also that the two trajectories are synchronized. For example,

when modeling a periodic orbit we require not only that the true trajectory and

pseudo-trajectory are ε-close but also that the time at which the true trajectory
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completes an orbit is ε-close to the time at which the pseudo-trajectory does.

To obtain this stronger type of shadowing result, time rescaling is necessary.

A number of approaches to time rescaling have been developed. Hayes &

Jackson (2005) give synopses of several methods, including: Van Vleck (1995)

who uses an explicit rescaling by adding time to the variational equation;

Coomes et al. (1994b, 1995) who present an implicit rescaling method based

on finding points on a nearby true orbit lying on hyperplanes perpendicular

to the direction of motion, i.e., the vector field; and Hayes (2001) and Hayes

& Jackson (2003) who develop a similar idea, where it is shown that the true

solution passes through a hyperplane containing each point of the pseudo-

trajectory in a small time interval. Using modifications of these shadowing

techniques for ODE, results can be proved for periodic trajectories, where

time rescaling is crucial to prevent persistent growth in time error (see, e.g.,

Coomes et al. , 1994a, 1997; Van Vleck, 1995).

An important and subtle issue that arises with the shadowing results is

whether the exact solution that shadows a numerical one is typical of true

orbits chosen at random. It could be the case that the exact solution is not

generic, but the solutions that shadow the numerical one are. In this case the

behaviour of the exact solution could be qualitatively different than that of

the shadowing solutions. Quinlan & Tremaine (1992) showed that there are

cases where this happens. There are a number of discussions of this cited in

Hayes & Jackson (2005), including Corless (1994b).

Because shadowing computations are so expensive and do not scale well,

applications of shadowing tend to work only for small, i.e., low dimensional,
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problems. The largest problems for which shadowing results have been proved

are studies of the gravitational n-body problem. They are good systems to

study since they are theoretically relatively simple yet display a wide variety

of dynamical behaviour. For references to several of these studies see (Hayes

& Jackson, 2005, 316-317).

The main shadowing results apply to IVP, but there are a few studies of the

method for BVP, DDE and DAE. Coomes (1997) proves a theorem specifying

shadowing conditions for problems where the solution is restricted to some

submanifold, e.g., DAE. For work on the use of shadowing in the study of

singular BVP see Liu (2005) and Lin (1989). Work has also been done by

Al-Nayef et al. (1997) on shadowing for neutral type DDE.

2.3 The Method of Modified Equations

Since the difference equations that define a numerical method can be difficult

to analyze directly, a better understanding of the method can be obtained by

generating a modified problem, the exact solution of which is closer to the

numerical solution than the numerical solution is to the exact solution of the

original equation. With such a modified problem in hand, an explanation of

the qualitative behaviour of the numerical method is possible by means of

a qualitative analysis of the modified equation. For example, things like a

qualitative change in the dynamics compared to the exact solution and the

emergence of spurious limit sets can be explained. Although the method is

called the “method of modified equations,” the method generally does require

modified problems, since in general any initial, boundary or algebraic condition
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must also be modified.11

The usual strategy to obtain a modified problem is to find an equation

which has an exact solution with zero local error by perturbing about the

local exact solution zn(t) (cf. equation (1.6)). This is accomplished by manip-

ulating the expression for the local truncation error that is furnished by the

numerical method. Restricting attention to fixed time-step one-step methods

for simplicity, the numerical method with step-size h applied to an IVP will

provide a formula of the form

yn+1 = yn + hI(y, t; h),

where I(y, t; h) is an increment function. If the method is of order s it has

a LEPUS that is O(hs). In order to obtain a modified equation from the

expression for the LEPUS we can expand zn(tn + h) in a Taylor series about

zn(tn) and use the expression for yn+1 given by the method. The result of this

is

en+1 =
[yn + hẏn +

h2

2
ÿn + · · · ]− [yn + hI(yn, tn; h)]

h

= ẏn − I(yn, tn; h) +
h
2
ÿn +

h2

6

...
y n + · · · .

Since we seek a perturbation about the local exact solution with zero local

truncation error, the method of modified equations therefore starts with the

11I say “in general” here because defect analysis is properly considered a special case of
the method of modified equations, but there the initial condition is left fixed.



39

equation

0 = ẋ− I(x, t; h) + h
2
ẍ+ h2

6

...
x + · · · . (2.6)

Since equation (2.6) is a singular perturbation of the original ODE some

manipulation is required. There are two parts to the manner in which this is

usually done. Suppose that we seek a modified equation that is O(hp) close to

the numerical solution, where p > s. First we truncate the equation to O(hp)

and then we differentiate it to obtain additional equations which allow us to

eliminate the higher derivatives. The result of this will be an equation

ẋ = f(x, t) + hsF (x, t),

where F (x, t) is an explicit function of x and t that we find, the solution of

which is O(hp) close to the numerical solution. This equation can then be

examined in order to better understand the behaviour of the numerical solu-

tion. As was indicated above, it really is a modified problem that is generated,

since any initial, boundary or algebraic condition must also be ensured to be

satisfied to the same order p.

As an example of the derivation of a modified equation consider the fixed

time-step forward Euler method, which is order 1. We will compute the second

order modified equation. Truncating equation (2.6) to second order we obtain

ẋ− f(x, t) + h
2
ẍ = 0. (2.7)
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Differentiating this we obtain

ẍ = Jf (x, t)ẋ+ ft(x, t)− h
2

...
x ,

where Jf (x, t) is the Jacobian of f(x, t). Substituting the resulting expression

for ẍ into the equation (2.7) we obtain

ẋ− f(x, t) + h
2
(Jf(x, t)ẋ+ ft(x, t)− h

2

...
x ) = 0.

Substituting the expression for ẋ from (2.7) into this yields

ẋ− f(x, t) + h
2

(

Jf (x, t)(f(x, t)− h
2
ẍ) + ft(x, t)− h

2

...
x
)

= 0.

Neglecting O(h2) terms then yields

ẋ− f(x, t) + h
2
Jf (x, t)f(x, t) +

h
2
ft(x, t) = 0.

We therefore obtain the modified equation

ẋ = f(x, t)− h
2
Jf(x, t)f(x, t)− h

2
ft(x, t)

=
(

I − h
2
Jf(x, t)

)

f(x, t)− h
2
ft(x, t).

In the case of autonomous systems this reduces to

ẋ =
(

I − h
2
Jf(x)

)

f(x). (2.8)
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A limitation of having finite-order modified equations, i.e., where p is finite,

is that although the solution to the modified problem follows the numerical

solution more closely than the solution to the original problem does, the mod-

ified equation could be of no use in understanding the long-time asymptotic

behaviour of the numerical solution. An approach that can be useful for such

an analysis is to try to find an infinite-order modified equation. This can

be sometimes done (Corless, 1994a) using the same approach as before ex-

cept that the series in equation (2.6) is not truncated and one seeks a pattern

in the equations obtained by differentiating (2.6) to eliminate higher deriva-

tives, thereby obtaining a modified equation with an infinite series, called a

B-series,12 a notion introduced by Hairer & Wanner (1974). B-series can also

be constructed in a more formal way (Calvo et al. , 1994) based on the method

of analyzing one-step methods using (rooted) trees (see, e.g., Butcher, 1987).

If the infinite series can be summed and/or efficiently computed then the

infinite-order modified equation can be useful for investigating the long-time

asymptotics of the numerical method on the problem at hand.

The origin of the method is in the study of numerical methods for the

solution of partial differential equations (PDE). Its origins go back as far as

Garabedian (1956), where the method was used to analyze successive over-

relaxation methods for the solution of finite-difference approximations to el-

liptic PDE. An early study of the method itself appears in (Hirt, 1968), which

examines the method as it is used to investigate the computational stability of

finite-difference equations. Other papers examining the method are (Warming

12The ‘B’ is for Butcher.
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& Hyett, 1974) and (Morton, 1977). Warming & Hyett (1974) show how a

finite-order modified equation can be used to determine necessary and suffi-

cient conditions for computational stability, and how it can be used to gain

insight into the nature of both dissipative and dispersive errors. Morton (1977)

appears to be the first discussion of the method as applied to initial-boundary-

value problems. References to many of the early papers that use the method in

the investigation of the properties of partial difference schemes for PDE, par-

ticularly their dispersive and dissipative properties, are available in Griffiths

& Sanz-Serna (1986).

The first consideration of the range of applicability and the shortcomings

of the method is due to Griffiths & Sanz-Serna (1986). Through a careful

examination of a few particular numerical methods applied to simple ODE and

PDE, they drew a number of conclusions about the method, which include:

one must ensure that the derivatives in the O(hp) remainder in the finite-order

modified equation are bounded as h→ 0; the numerical method being analyzed

must be numerically stable as h→ 0 to ensure that estimates of the local error

imply estimates of the global error; and that the finite-order modified equation

cannot be used to infer fixed h long-time stability and stability as h → 0 for

arbitrary finite times. They also made the point about modified problems,

viz., that all the side conditions for the differential equation must be satisfied

to the same order as the modified equation.

From the point of view of the method as applied to ODE, one of the earliest

papers is a paper in the dynamical systems literature by Feng (1991). Treating

vector fields and flows as formal power series, he proves structure preservation



43

theorems relating near identity formal maps derived from a formal vector field.

He points out that since numerical methods can be characterized in terms

of a near identity map depending on the step size and approximating the

flow of the original system, his theory has “implications for the construction,

analysis, assessment and understanding of numerical methods, particularly

those applied to Hamiltonian, Liouville and contact systems.” And, indeed,

many of the earliest studies and uses of the method of modified equations for

ODE are in the context of its use for geometric integrators, some of which

are mentioned below. Another use of the method of modified equations in

the context of dynamical systems is (Reddien, 1995), which is a study of the

stability of a variety of Runge-Kutta and Adams methods at weakly attracting

equilibria, weakly attracting periodic solutions and Hopf points.

As indicated above, the method of modified equations is important in the

context of geometric numerical methods since it is useful for showing that the

flow of the modified equation exactly solved by a particular numerical method

possesses the structural features of the flow of the original equation that are

relevant to the problem being solved, e.g., symplecticness (or symplecticity),

symmetry, energy conservation, reversibility, integral invariants, etc. This

allows one to explain interesting phenomena such as the almost conservation

of energy, the linear error growth in Hamiltonian systems, and the existence

of periodic solutions and invariant tori. An early example of the use of the

method of modified equations for this purpose is a paper by Hairer (1994),

who uses the method of modified equations to show that for a wide variety of

symplectic integrators applied to Hamiltonian problems, the modified problem
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is also Hamiltonian.

Since the topic of geometric integrators has a large literature, and it is some-

what tangential to the current focus, we only provide a selection of works in

this area. Sanz-Serna (1992) provides an early survey of the use of the method

of modified equations for symplectic integrators, i.e., integrators that preserve

the symplectic structure of the flow of a system of ODE. Two major classes of

symplectic integrators are considered: the subset of the standard Runge-Kutta

or Runge-Kutta-Nyström methods that can be shown to be symplectic; and

those based on generating functions, which includes Hamilton-Jacobi methods,

applicable to Hamilton-Jacobi equations. In addition to carefully explaining

the notions of ‘symplecticness’ and symplectic integrators, Sanz-Serna also

discusses the general properties of symplectic integrators and provides a sum-

mary of their practical performance. For a more recent survey of the structure

preserving integration of Hamiltonian systems, see Hairer (2005). Calvo et al.

(1994) is another introductory article, which, as mentioned above, uses the

analysis of numerical methods using rooted trees to present the method in

terms of the use of formal B-series. The method is then illustrated in an

application to ODE. Sanz-Serna & Calvo (1994) devote a book to the subject.

Reich (1997) provides the first application of the method of modified equa-

tions to constrained Hamiltonian systems, which are important in the physics

literature. It is based on an extension of the integrator to an open neigh-

bourhood of M (the constraint manifold) so that standard techniques can be

applied. As well as being an excellent introduction to geometric numerical

methods, Hairer et al. (2006) provide another method for BEA of constrained
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Hamiltonian systems. These two methods, however, cannot guaranteee a glob-

ally defined modified Hamiltonian. Hairer (2003) shows how this can be done

for partitioned Runge-Kutta methods.

Problems of ODE on manifolds need not be formulated in terms of an

ODE together with a constraint. Such problems can also be formulated as

dynamical evolution in a Lie group. Faltinsen (2000) extends the method to

differential equations on manifolds using Lie group methods. If the Lie algebra

is nilpotent a global stability analysis can be done in the Lie algebra. In the

general case, however, this linear analysis fails. In order to show that there

is a perturbed differential equation on the Lie group with a solution that is

exponentially close to the numerical integrator after several steps, he proves

a generalized version of the Alekseev-Gröbner theorem (Theorem 4.1, p. 73),

which implies many stability properties of Lie-group methods.

Turning to discussions of the method of modified equations itself, Hairer

& Lubich (1997) study the influence of the truncation of the formal modified

equation to the difference between the numerical solution and the exact solu-

tion of the perturbed equation. They obtain results on the long-time behaviour

of numerical solutions and consider applications to phase portraits near various

equilibria and steady-state solutions. Reich (1999) aims at providing a unify-

ing framework and a simplification of the existing results and corresponding

proofs on the long time behaviour of numerical integration methods. Unlike

previous methods, the BEA is based on a recursive definition of the modified

vector field so that explicit Taylor expansions are not required.

Some developments for geometric integrators are the following. Gonzalez
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et al. (1999) introduce a technique that can be used to prove the modi-

fied equations inherits a qualitative property from the underlying system of

ODE. The technique applies to arbitrary one-step methods and unifying and

extending similar results proved in other ways. In a recent paper, Chartier

et al. (2007) develop high-order, structure-preserving numerical integrators

for ODE using modified differential equations, with an emphasis on meth-

ods represented explicitly as B-series. Bond & Leimkuhler (2007) extend the

standard BEA for Hamiltonian systems to systems involving collisions, which

introduce intermittent impulses into continuous evolution.

It was originally thought that symplectic integrators had to be fixed time-

step methods, since varying the time-step would not be compatible with struc-

ture preservation. However, Hairer (1997) developed a way of combining

variable time-step with symplectic integrators and justifies the method using

BEA. More recently, Hairer & Soderlind (2005) develop completely explicit,

reversible, symmetry-preserving, adaptive step-size selection algorithms for

geometric numerical integrators. They use BEA and reversible perturbation

theory to analyze a new step density controller. They are able to preserve

structure and the excellent long-time behaviour of constant-step methods, but

with the added accuracy and efficiency of multistep methods. Blanes & Budd

(2005) use modified equations to analyze variable time-step geometric integra-

tion methods and determine certain limitations of the methods.
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Chapter 3

Numerical Methods for

Ordinary Differential Equations

Using Backward Error

3.1 Defect Control

The defect can be computed for any numerical method by constructing a

suitable interpolant u(t) of the solution yn, such that u(tn) = yn. To illustrate

how this can be done, consider the non-autonomous problem

ẏ = f(y, t) = cos(πty), y(0) = y0. (3.1)

solved using the implicit trapezoidal rule. This gives us values yn of the so-

lution at times tn, and it computes the values of ẏ(tn) at each solution time.

Consider a single interval [tn, tn+1]. In case that the numerical method does

not compute the values of ẏ(tn), we can use the expression for ẏ in (3.1) to

evaluate the derivatives of the solution at the end points; these are already

calculated by the implicit trapezoidal rule, making its use computationally
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efficient. Then we can use cubic Hermite interpolation to construct an in-

terpolant un(t) over each interval [tn, tn+1]. This generates a piecewise cubic

Hermite interpolant u(t) over the entire interval of integration [t0, T ]. More-

over, this interpolant is C1, since it is constructed to match derivatives at the

end points of successive intervals. The implicit trapezoidal rule is the same as

the two-stage theta method, which has the Butcher tableau

0

1 1− θ θ

1− θ θ

for θ = 1
2
. This method is implemented in the Matlab code theta2, provided

in appendix A.2. Using this method with the step-size h = 0.001 and y0 = 3,

we obtain the solution shown in figure 3.1(a).1 Since the equation for the

piecewise cubic Hermite interpolant on each interval [tn, tn+1] is

un(t) = (θ − 1)2(2θ + 1)yn + θ(θ − 1)2hnf(yn, tn)+

θ2(−2θ + 3)yn+1 + θ2(θ − 1)2hnf(yn+1, tn+1), (3.2)

in local coordinates θ = (t − tn)/hn, and we are assured that the interpolant

u(t) is C1, we are able to compute the derivative of the interpolant. The Mat-

lab function pchi (code provided in appendix A.3) computes the interpolant

u(t) and its derivative at whichever points along the integration interval one

chooses. Using this function to compute the defect at 1000 points along the

1The function theta2 uses Newton iteration to compute each time step, the tolerance
for which was set to 10−8.
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(a) The IVP (3.1) solved using the im-
plicit midpoint rule.
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(b) The defect of the solution in 3.1(a)
computed using piecewise cubic Hermite
interpolation.

Figure 3.1: An example of computing the defect.

interval we find the defect plotted in figure 3.1(b). It follows from this plot

that the numerical solution is the exact solution of the problem

u̇ = cos(πtu) + 10−4v(t), u(0) = u0,

where ‖v(t)‖ ≤ 1. Although this example does not use defect control, the same

procedure can be used for any variable time-step method, since the procedure

only requires a solution sequence yn and the values of ẏ(tn) at each time-step

tn.

As an example of a defect control algorithm we consider a defect-controlled

Euler method.2 Consider, for simplicity, the scalar version of the ODE (1.1)

and the local variable θ = (t−tn)/hn. Let k0 = f(yn, tn) and k1 = f(yn+1, tn+1).

2The code for ode1d, a Matlab implementation of the following defect-controlled Euler
method, is provided in appendix A.1.
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Then one step of the Euler method is

yn+1 = yn + hnk0. (3.3)

Now, to analyze the defect for this method we need an interpolant, and we

can obtain an asymptotically valid estimate of the defect using the interpolant

un(t) = yn + hn(1 + θ − θ2)θk0 + θ2hn(θ − 1)k1, (3.4)

which can be obtained from equations (3.2) and (3.3). By evaluating the

Taylor expansion of f(y, t) at (yn, tn) and (yn+1, tn+1) it can be shown that

f(y, t) = k0 + θ(k1 − k0) +O(h2n),

where k1 − k0 is O(hn). Using this expression for f(y, t) and the interpolant,

it can then be shown that

δ(t) = 3θ(θ − 1)(k1 − k0) +O(h2n).

Since for a single step we are interested in the interval θ ∈ [0, 1], we thus have

that, asymptotically (as hn → 0),

δ(t) = 3θ(1− θ)(k1 − k0). (3.5)

It is easily seen that the maximum of this function occurs at θ = 1
2
. Therefore

substituting θ = 1
2
into (3.5) we obtain an asymptotically valid bound on the
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defect,

‖δ(t)‖∞ ≈ 3
4
‖k1 − k0‖∞ ≤ ε, (3.6)

which we try to ensure is less than the user-specified tolerance ε. Thus, to

determine whether the step will be accepted or not we test to see whether or

not the asymptotic bound is less than the tolerance. It provides an efficient

test since, although k1 is not needed for the current step of the Euler method,

it will be required for the next step and so it would have to be computed

anyway. Higher-order methods require more work. Intermediate values of the

solution would then be computed using the interpolant (3.4). If the condition

(3.6) is not satisfied, then a heuristic can be used to adjust the step-size, which

would then be checked again, or step-size control algorithms using linear digital

control theory can be used (see Söderlind, 2003) in much the same way as for

local error controlled codes. The control condition here is trivially extended

to allow vector values. Interpolation of the solution is then done component-

wise. It should be mentioned here that the defect-controlled Euler method is

not intended for practical use. It is, however, useful as a simple example of how

a defect control algorithm can be implemented and for conceptual exploration.

As an illustration of the use of this defect-controlled Euler method, consider

the unforced van der Pol equation

ẍ+ ǫ(x2 − 1)ẋ+ x = 0, y(0) = y0. (3.7)

This is written in the form ẏ = f(y, t) in the usual way by letting y =

(y1, y2)
T = (x, ẋ)T . We will solve this equation for the parameter value
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(a) The IVP (3.7) solved using ode1d.
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(b) Estimated maximum defect on each
integration step of the solution in 3.2(a)
computed using piecewise cubic Hermite
interpolation.

Figure 3.2: Van der Pol equation solved using the defect-controlled Euler method ode1d

with tolerance ε = 10−1.

ǫ = 2 using ode1d, a Matlab implementation of the above described defect-

controlled Euler method (code provided in appendix A.1). Setting the tol-

erance ε = 10−1, we obtain the numerical solution plotted in figure 3.2(a).

Using pchi to compute piecewise cubic Hermite interpolants for each compo-

nent of the solution and estimating the maximum defect on each integration

step, we find that the maximum defect is of the form seen in figure 3.2(b).3

We observe from figure 3.2(b) that the method ode1d is controlling the defect

properly, since the maximum value of the defect is seen to be of the same

order of magnitude as the tolerance ε = 10−1. That this is not coincidence

is seen by reducing the tolerance to ε = 10−2 and repeating the same kind of

computation. The results of this are seen in figure 3.3.

Although there are good reasons to use defect control for IVP, such as

the relative problem independence of error estimates as compared to local

3This computation is described in more detail in section 5.1.
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(a) The IVP (3.7) solved using ode1d.
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(b) Estimated maximum defect on each
integration step of the solution in 3.3(a)
computed using piecewise cubic Hermite
interpolation.

Figure 3.3: Van der Pol equation solved using the defect-controlled Euler method ode1d

with tolerance ε = 10−2.

error control and its effectiveness on chaotic problems (cf. section 5.1), the

main packages that use it are for solving BVP and DDE. Many of the earlier

defect control algorithms, however, are for IVP. An early paper considering

numerical methods with defect control is by Hanson & Enright (1983), who

consider algorithms for controlling the defect for variable order Adams methods

for IVP. Since multistep codes produce a (piecewise) polynomial interpolant

of the numerical solution, they are easily modified to compute the defect.

One of the advantages of the defect approach, namely that it can provide

an inexpensive estimate of the error that is not particularly sensitive to the

problem at hand, is made clear by showing that the defect could be directly

related to the local error, and hence the user prescribed tolerance. There are

also the papers by Enright (1989a,b) mentioned in the previous section. One of

the defect control algorithms in Enright (1989a) uses an asymptotically valid

estimate of the defect, which is important for the selection of optimal points
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for the evaluation of the defect. The problem of finding interpolants for which

one has information about the asymptotic behaviour of the defect is addressed

more fully in Higham (1989b). Here two classes of interpolant are presented

for which the asymptotic behaviour of the interpolant is known, which allows

the selection of optimal points of evaluation, yielding asymptotically correct

estimation of the maximum value of the defect over each time-step.

One other important algorithm using defect control for IVP is the one

described by Corless & Corliss (1992). Since a major part of the motivation for

the defect control approach is that the backward error point of view allows one

to regard one’s numerical solution as the exact solution of a nearby problem,

it is important to be able to have a guaranteed bound on the defect when one

needs one in order to ensure that one has an ε-nearby problem. The algorithms

outlined by Corless & Corliss (1992) take as input initial and final times t0, T ,

and initial conditon y0 and a tolerance ε = ‖δ(t)‖. The output are the nodes

tn, the boundaries of the steps, a continuous u(t) that solves (1.3) exactly and

guarantees that ‖δ(t)‖ ≤ ε for all t ∈ [t0, T ].

The algorithm can be adapted for a variety of numerical methods for solving

ODE. The main loop of the algorithm involves the following. A continuous

approximate solution u(t) is computed on ti ≤ t ≤ tn + hn using a continuous

numerical method or as an interpolant obtained from a discrete method. The

defect is then computed, which is easily done using a polynomial interpolant,

and an enclosure ∆ of ‖δ(t)‖ is computed. This is the only part of the algorithm

that uses interval arithmetic. Then if ∆ > ε the step is rejected and hn is

reduced, if ∆ ≪ ε the step is rejected and hn is increased, and otherwise the



55

step is accepted. The method described to compute the bound ∆ uses interval

Taylor operators, which achieve tight bounds on the range of the defect and

its derivatives. For more details see (Corless & Corliss, 1992, 7).

As mentioned above, defect control has become a common method for the

solution of BVP and DDE for ODE. Since these problems are not the focus

of this work, the algorithms will not be discussed in detail. An advantage

of the use of defect control for BVPODE is that it is better able to deal

with poor guesses for the mesh and for the solution. Any method for the

solution of BVP that produces a continuous approximation of the solution can

benefit from the use of defect control. A common approach to the solution of

BVPODE is the use of collocation methods, which have been used for the codes

COLSYS (Ascher et al. , 1979) and its descendent COLNEW (Bader & Ascher,

1987). In the standard implementation of collocation methods, a continuous

approximation of the solution over entire interval of the problem is generated.

This makes it easy to assess the quality of the solution by computing the

defect. Enright & Muir (1996) use an alternative approach using CMIRK

methods, which yields an inexpensive interpolant of the solution obtained on

the mesh. Using the continuous interpolant obtained from the method, defect

control is used to determine when to terminate and how to redistribute the

mesh, rather than using global error control for these purposes. The algorithm

for implementing this approach is implemented in the FORTRAN 77 code

MIRKDC.

More recently, Muir et al. (2003) have implemented a parallel version of

MIRKDC, called PMIRKDC. The main computational cost of the MIRKDC
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algorithm involves the treatment of large almost block diagonal (ABD) lin-

ear systems, treated using sequential ABD software COLROW. PMIRKDC

replaces this with the parallel ABD software RSCALE, and parallelizes the

setup of the ABD systems and the solution interpolants. The parallelization

of the MIRKDC code is able to produce almost linear speed ups in execution

time.

A major issue with software packages for the solution of ODE has been

that the user interfaces have been very complicated and difficult for users to

learn, particularly code developed using FORTRAN. Concern for this issue in

defect control software is not new, going back at least as far as the software

package DEPAC developed by (Shampine & Watts, 1980), but there has been

a renewed interest in this more recently.4

Simplification of the user interface was a major concern in the development

of bvp4c by Kierzenka & Shampine (2001) for the Matlab PSE. This package

allows for the solution of BVP with non-separated boundary conditions that

can depend on a vector of unknown parameters, and analytical partial deriva-

tives are not required. It also produces inexpensive, asymptotically correct L∞

and L2 norm estimates of the defect. Kierzenka & Shampine (2001) point out

that bvp4c can be regarded as a collocation method, and that the acceptance

test based on the size of the defect automatically takes into account how the

collocation equations are satisfied. bvp4c is also a vectorized code and includes

an option to speed up the solution of a problem by vectorizing the evaluation

of the vector field.

4For a discussion of design issues for ODE solvers in general see (Enright, 2002) and
(Shampine, 2007).
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Shampine et al. (2006) developed the software package BVP SOLVER to

be a more user friendly version of MIRKDC. Not only does this software extend

MIRKDC to problems with unknown parameters and ODE problems with a

singular coefficient, it also uses more efficient CRK methods and includes aux-

iliary routines for evaluating the solution and its derivative and for extension

of the problem interval. In order to emulate the convenience of bvp4c in FOR-

TRAN, it was necessary to utilize the capabilities of FORTRAN 90/95. This

enables a radical reduction in the number of user-supplied arguments and the

subroutines that must be supplied by the user. The code also approximates

partial derivatives using finite differences by default, but allows the user to

supply a routine to do the evaluation when it is required. It also enables the

code to handle memory allocation dynamically, whereas in MIRKDC this was

handled by the user before running the computation. Although it is a defect

control algorithm, the code also enables the estimation of the global error at

mesh points.

As for IVP, the generation of interpolants with asymptotically correct esti-

mates of the defect is important. Some codes, including bvp4c, as mentioned

above, include interpolants that have asymptotically correct estimates, but

the FORTRAN codes MIRKDC and BVP SOLVER do not. Recent work by

Enright & Muir (2010) addresses this problem by developing a method to gen-

erate interpolants such that one knows a priori where the maximum defect on

each mesh subinterval occurs. The availability of more reliable defect estimates

can also improve the mesh redistribution process, which thereby provides an

improvement in the overall efficiency of the computation.
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An important issue in the use of defect control methods for the solution

of BVPODE is the estimation of condition numbers for the problem at hand,

i.e., numbers relating the size of the defect δ(t) to the size of the global er-

ror y(t)− u(t). Shampine & Muir (2004) investigate a conditioning constant

appropriate to BVP solvers that control residuals and an inexpensive way to

estimate this constant. A key idea is the implementation of an approximate

matrix norm algorithm due to Higham and Tisseur. It is demonstrated that

the estimated conditioning constants are quite helpful in assessing the quality

of numerical solutions obtained from a control of the defect. In particular,

it enables the detection of numerical pseudosolutions to BVP that have no

solution. Although this paper considers a conditioning constant, Corless has

pointed out that codes should ideally provide a conditioning function, rather

than a conditioning constant, since the ability to determine where in the prob-

lem interval a problem is poorly conditioned should be important from the

point of view of selecting an optimal mesh.5

The fact that DDE codes produce continuous approximations to the solu-

tion makes it apparent that defect control a natural approach to take, since it

is inexpensive to sample. Enright & Hayashi (1998) developed and studied a

method for solving general neutral-type DDE. This approach is implemented

in (Enright & Hayashi, 1997) using a sixth-order CRK method to produce

DDVERK, a defect-controlled DDE solver. The details of the algorithm and

numerical results are provided. More recently, defect control has been used

by Shampine (2005) to develop an effective program ddesd for the solution of

5Private communication.
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DDE with time- and state-dependent delays. The code is based on an explicit

continuous RK method. This code has a well-designed interface, which makes

it easy to formulate and solve DDE, even those with complications such as

event location and restarts. ddesd has been incorporated into the Matlab

PSE.

3.2 Shadowing

Shadowing algorithms are based on the containment and refinement procedure

developed by Hammel et al. (1988) for 2-dimensional maps, which therefore

applies to the finite-time flow ϕhn
approximated by a numerical method. This

procedure was generalized to n-dimensional Hamiltonian systems by Quinlan

& Tremaine (1992). For simplicity we will just consider the 2-dimensional

case. For a description of the 3-dimensional case, see (Hayes & Jackson, 2005,

306-307).

The algorithm outlined by Hammel et al. (1988) is the following: Let

xn+1 = ϕ(xn) be a 2-dimensional homeomorphism, and let yn be a δ-pseudo-

orbit of the map, i.e., |yn+1 − ϕ(yn)| < δ, 0 ≤ n ≤ G. Strictly speaking, we

assume that yn+1 = T (ϕ(yn)), where T is a truncation operator correspond-

ing to machine roundoff error. To ensure the integrity of this calculation we

compute ϕ(yn) to a higher precision than that of the truncation operator, and

check that the error in ϕ(yn) does not corrupt the computation of yn+1. Now,

we want have a procedure to show that there exists a true orbit xn nearby. To

do this we will construct a sequence of parallelograms An in the neighbour-

hood of each yn within which the true orbit must lie. Now, we require for each
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n ≥ 1 that ϕ(An) maps across An+1 in a particular way. Two conditions must

be satisfied:

(i) An+1 ∩ ϕ(An) 6= �;

(ii) each An has distinguished (parallel) sides C1
n and C2

n such that ϕ(An) ∩

C i
n+1 6= �, while ϕ(C i

n) ∩ An+1 = �, i = 1, 2.

The ability to satisfy these conditions depends on the pseudohyperbolicity

of the map ϕ. Assuming that the map is hyperbolic in the vicinity of yn for

0 ≤ yn ≤ G, then let ên and ĉn be unit vectors pointing along the expanding

and contracting directions at the n-th step. From a computational point of

view these vectors are the average directions of expansion and contraction.

These vectors, respectively, can be found iteratively using

ên+1 =
Ynên

‖Ynên‖
, ĉn+1 =

Y −1
n ĉn

‖Y −1
n ĉn‖

,

where Yn is the Jacobian of ϕ evaluated at yn computed at the higher preci-

sion. Because of the hyperbolicity, ϕ tends to suppress errors in the contracting

direction ĉn and ϕ−1 tends to suppress errors in the expanding direction ên.

This is the reason that the expression for ĉn is iterated forwards using Yn start-

ing with a randomly selected unit vector and the expression for ên is iterated

backwards using Y −1
n starting with another randomly selected unit vector. The

iteration gives ên and ĉn aligned with the expanding and contracting directions

after a few iterates. When the expanding and contracting directions can no

longer be resolved to machine precision, a (soft) glitch occurs, and this is the

length n = G of the shadow.
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Now, the two sides C1
n and C2

n will be parallel to ĉn and the other two

sides of each parallelogram An will be E1
n and E2

n, each parallel to ên. We will

mention how the An can be selected shortly, but for simplicity of exposition we

assume for the moment that each An is the same size. Given that An contains

yn, we ensure that condition (i) holds. Then the hyperbolicity ensures that

the conditions in (ii) are satisfied since, relative to An+1, the action of ϕ causes

the sides C i
n to contract and be pushed further away (by the expansion) and

the side Ei
n to expand and be pressed closer together (by the contraction).

That the C i
n are pushed further away under the action of ϕ ensures that

ϕ(C i
n)∩An+1 = � holds. And that ϕ(An) can be thought of expanding An in

one direction and contracting it in the other ensures that ϕ(An)∩C i
n+1 6= �.

We now define

J0 =

G
⋂

j=0

ϕ−j(Aj) 6= �,

which is the region around the initial point y0 of the pseudo-orbit such that

its image under ϕn is contained in An for all 0 ≤ n ≤ G. This gives us the

idea of containment, viz., since J0 6= �, there exists a family of true orbits xn

that ε-shadow the pseudo-orbit yn, where

ε = max
0≤j≤G

{

max
xj∈Aj

d(yj, xj)

}

.

Once the An are calculated this quantity is easily calculated.

Now, to maximize the length of the shadow, i.e., the size of G, we use a

procedure to produce a less noisy orbit y∗n that is uniformly close to yn, and

it will be the y∗n that will be at the centre of the An. This is the refinement
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procedure. One way to do this, outlined by Hammel et al. (1988, 468) and

Grebogi et al. (1990, 1529), is the following. Let Ξn be the one-step error

Ξn+1 = yn+1 − ϕ(yn), (3.8)

which we know is bounded by δ. Then we will construct the refined orbit y∗n

by letting

y∗n = yn +Υn, (3.9)

where Υn is kept small. From equations (3.8) and (3.9) we have that

Υn+1 = ϕ(y∗n)− Ξn+1 − ϕ(yn), (3.10)

where y∗n+1 = ϕ(y∗n). Since we are keeping Υn small, we can take the Taylor

expansion of ϕ(y∗n) about yn, so that ϕ(y∗n) ≃ ϕ(yn) + YnΥn. Thus, equation

(3.10) becomes

Υn+1 ≃ YnΥn − Ξn+1.

Using the vectors ên and ĉn, we let Υn = αnên+βnĉn and Ξn = ξnên+ζnĉn.

Since we can calculate ϕ(yn) using higher precision arithmetic, we can compute

ξn and ζn directly. We find αn and βn recursively and by iterating

αn+1 = |Ynên|αn − ξn+1, βn = |Ynĉn|βn − ζn+1.

The computation here can be made stable by computing the βn in the forward

direction starting at n = 0 and the αn in the backward direction starting at



63

n = G. In this way, a refined pseudo-orbit y∗n is obtained that is less noisy

than the original yn.

Finally, we need a procedure to choose the An such that they are as small

as possible, to minimize ε. Hammel et al. (1988) point out that this can

be accomplished in the following way: Recall we are computing ϕ(x) to a

higher precision than the other quantities. Let ϕ(x)∗ be the computed value

using the higher precision. This way we will have that |ϕ∗(x) − ϕ(x)| < δ∗.

Then the An can be made to satisfy conditions (i) and (ii) by ensuring that

dist(ϕ∗(Ei
n), E

i
n+1) > δ∗ and that dist(C i

n, ϕ
∗−1(C i

n+1)) > δ∗, where again we

exploit the hyperbolicity to suppress errors. These conditions ensure that the

true image of An overlaps An+1 in the way required to satisfy the conditions.

There are questions concerning the reliability of this type of procedure.

One question is: How do we know that the refinement procedure converges on

a true orbit of the system, using finite precision FP arithmetic? This issue is

addressed by the procedure above for two-dimensional maps (see also Hammel

et al. , 1987). For higher-dimensional systems this issue was addressed by

Sauer & Yorke (1991), who showed that under the conditions of a theorem

they prove, viz., if certain quantities evaluated at the points of the orbit are

sufficiently small, then the iterated application of the refinement procedure

results in a sequence of pseudo-orbits whose limit is an exact orbit that is

not very far from the original pseudo-orbit. This result does not prove that

the refinement procedure always works, however, since it requires establishing

the conditions of the theorem for each refinement calculation to prove that

an exact shadow exists. Quinlan & Tremaine (1992) showed that for simple
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systems glitches can occur that do not depend on any refinement algorithm.

And Hayes & Jackson (2005) point out that even if refinement is successful,

in the sense that it converges to machine precision, this only establishes the

existence of a nearby pseudo-orbit with less noise, not that there is a nearby

exact orbit. Hayes (1995) was also able to show examples where refinement

failed to find a pseudo-orbit with less noise when one existed and where the

iteration continues indefinitely without converging or blowing up. Thus, it

is unknown whether convergence of the nonrigorous refinement procedure to

machine precision implies the existence of an exact orbit of similar length to

that of the pseudo-orbit, but this is usually taken as good evidence that such

an exact orbit exists. For other limitations of the method, see (Quinlan &

Tremaine, 1992).

As was mentioned in section 2.2, for the shadowing of ODE problems an

extension of the above described procedure is required, viz., is it necessary to

show that shadowing of a pseudo-orbit by an exact orbit occurs in both space

and time. The procedures for doing this mentioned in section 2.2 all work by

relying on a shadowing theorem for ODE and then computing quantities along

the pseudo-orbit that ensure that the conditions of the theorem are met.

As an example, we consider the method developed by Coomes et al. (1994b)

for time rescaling. The statement of the theorem requires the definition of a

variety of quantities. The norms in this context are taken to be the Euclidean

norm for vectors and the induced operator norms for matrices and linear oper-

ators. Let yn, 0 ≤ n ≤ N , be a δ-pseudo-orbit of a system (1.1) with flow ϕt,

with an associated sequence of times hn, 0 ≤ n ≤ N . The relevant definition
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of ε-shadow for ODE systems, then, is a true orbit xn, 0 ≤ n ≤ N , of ϕt for

times t = tn, viz., ϕtn(xn) = xn+1, such that

‖xn − yn‖ ≤ ε and ‖tn − hn‖ ≤ ε.

In a manner similar to above, Yn is now considered to be a sequence of matrices

that differ from the Jacobian of ϕtn evaluated at yn by less than δ, i.e.,

‖Yn −Dϕhn
(yn)‖ ≤ δ, 0 ≤ n ≤ N − 1. (3.11)

We also define a sequence An of (n − 1) × (n − 1) matrices in the following

way. Let Sn, 0 ≤ n ≤ N , be an n× (n−1) matrix which has as its columns an

orthonormal basis for the n− 1-dimensional subspace orthogonal to yn. Then

we let

An = S∗
n+1YnSn, 0 ≤ n ≤ N − 1,

which makes An the restriction of Yn to the subspace orthogonal to f(yn)

followed by a projection onto the subspace orthogonal to f(yn+1). We then

define a linear operator L: (Rn−1)N+1 → (Rn−1)N , defined such that if ξn is a

sequence in (Rn−1)N+1, then Lξ ∈ (Rn−1)N is defined by

(Lξ)n = ξn+1 − Anξn, 0 ≤ n ≤ N − 1.

Since this operator is onto it has a right inverse. Let L−1 be a right inverse of

L. Then, finally, we define seven constants. Let ε0 be a positive number and

let U be a convex open set containing the sequence yn, 0 ≤ n ≤ N such that if
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x is in the ε0-ball around yn, then the solution ϕt(x) is defined for 0 ≤ t ≤ 2hn

and is in U . Then, for such a U we define

M0 = sup
x∈U

‖f(x)‖, M1 = sup
x∈U

‖Df(x)‖, M2 = sup
x∈U

‖D2f(x)‖,

∆ = inf
0≤n≤N

‖f(yn)‖, Θ = sup
0≤n≤N−1

‖Yn‖, h = sup
0≤n≤N−1

hn.

With these definitions, we may now state the finite-time shadowing theorem

of (Coomes et al. , 1994b): Let yn, 0 ≤ n ≤ N be a δ-pseudo-orbit of an

autonomous system ẋ = f(x), and let

C = max{∆−1(Θ‖L−1‖+ 1), ‖L−1‖}. (3.12)

If δ satisfies the inequalites

(i) C(M1 + 1)δ ≤ 1
2
,

(ii) 4Cδ < min0≤n≤N−1 hk, 4Cδ < ε0,

(iii) 8
(

M0M1 + 2M1e
2M1h + 2M2he

4M1h
)

C2δ ≤ 1,

then the pseudo-orbit yn, 0 ≤ n ≤ N , is ε-shadowed by a true orbit xn, 0 ≤

n ≤ N , with

ε ≤ 4Cδ. (3.13)

For a proof of this theorem, see (Coomes et al. , 1994b, 38-43).

With the statement of the theorem, we can now sketch how the numerical

algorithm outlined by Coomes et al. (1994b, 38) works. Consider a standard

one-step method applied to the autonomous version ẋ = f(x), x(t0) = y0, of
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(1.1), which generates a solution sequence yn, 0 ≤ n ≤ N , and corresponding

time-steps hn. The matrices Yn are then computed at each step by applying

the same numerical method for a time-step of hn to the larger IVP

ẋ = f(x), Ẋ = Df(x)X, x(t0) = yn, X(t0) = I.

With an appropriate choice of a one-step method and control of the size of the

time-steps hn, we can control the local errors so as to produce a δ-pseudo-orbit

yn and matrices Yn that satisfy condition (3.11) (Coomes et al. , 1994b, 38).

Then an appropriate U given the problem being considered is selected,

which could be some absorbing set for the problem. Then the constants M0,

M1 and M2 can be determined. The details of how ‖L−1‖ is calculated, which

involves computing the matrices Sn, are technical and are described in detail

in (Coomes et al. , 1995), as is the entirety of the algorithm. With all of this

in place, we can then calculate the quantities h, δ,∆,Θ, and ‖L−1‖, updating

them at each step of the integration. Then at each step the conditions (i)-(iii)

can be checked. If they are satisfied, then we may conclude that there is an

exact orbit of the system that ε-shadows the pseudo-orbit up to that point in

time. The integration is then continued until the conditions of the theorem

cannot be satisfied.

For descriptions of the methods mentioned in section 2.2, i.e., those devel-

oped by Chow & Palmer (1991), Chow & Palmer (1992), Chow & Van Vleck

(1994), Sanz-Serna & Larsson (1993), Sauer & Yorke (1991), see the discus-

sion in (Hayes & Jackson, 2005, 312-16), which also considers Coomes et al.
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(1994b).

Notice that the quantity ‖L−1‖ in equation (3.13), where C is defined

in equation (3.12), acts as a magnifying factor between the distance ε to

the shadow and δ, which is a bound on the local error of the pseudo-orbit.

Thus, we see that ‖L−1‖ acts like a condition number, where ε is analo-

gous to the forward error and δ to the backward error. The operator L−1

is closely related to the operator L−1, which is a right inverse of the operator

L: (Rn−1)N+1 → (Rn−1)N defined such that for a sequence ξn in (Rn−1)N+1,

Lξ ∈ (Rn−1)N is defined by (Lξ)n = ξn+1 −Dϕ(yn)ξn, where ϕ: R
n → R

n is a

C2 function. Chow & Palmer (1992) prove a theorem that shows that ‖L−1‖δ

is approximately the shadow distance for n-dimensional pseudohyperbolic sys-

tems. For this reason ‖L−1‖ is sometimes called the condition number. It

has also been referred to as the modulus of continuity and brittleness. If the

condition number is similar to the size of the inverse of the machine epsilon

or larger then the shadowing distance becomes of the order of the size of the

variables themselves, and accurate shadowing becomes impossible.

3.3 Method of Modified Equations

Although not much work has been done on the automation of the method

of modified equations, Ahmed & Corless (1997) describe such an algorithm

for explicit one-step methods and provide a Maple implementation of that

algorithm in an appendix to that paper. The suggestion of automating the

method goes back a bit further, as Corless (1994a) points out that Char et al.

(1991) said that “there may be some scope for” automating the method of
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modified equations with a symbolic manipulation package such as Maple. It

is seen that the procedure for deriving modified equations described in section

2.3 is algorithmic. So an algorithm that can be implemented using a computer

algebra system can follow a similar approach.

The algorithm described by Ahmed & Corless (1997) is the following. Con-

sider an explicit one-step numerical method yn+1 = yn + hI(yn, h). Letting

y(t) = yn and y(t + h) = yn+1 then we first form the expression for the local

truncation error6

e =

p
∑

n=1

hn−1

n!
y(n)(t)− I(y(t), h),

which is then rearranged to isolate y′ and differentiated p times. After each

differentiation one more term in the series is truncated so that expressions for

y(n) are obtained for 1 ≤ n ≤ p. This process ensures that y(p) only contains

derivatives of lower orders.

For the purposes of induction, assume that we have expressions for y(n), i+

1 ≤ n ≤ p, in terms of y(i) and below. We then substitute these expressions

into the expression for y(i). This expression will contain y(i) on the right hand

size but only multiplied by some multiple of h. We recursively substitute

this expression into itself until an expression for y(i) containing terms of with

lower derivatives. This equation is then used to eliminate y(i) from the higher

derivatives, completing the induction step. After this process is repeated p

times we obtain as our p-th order modified equation ẏ = y(1).

Although it is less general, Hairer & Vilmart (2006) describe automation

6Ahmed & Corless (1997, 4) point out that I could also be expanded in a series in h,
but since I is independent of h for explicit methods this is often trivial.
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of a procedure that uses the method of modified equations to generate higher-

order versions of the symplectic and time-reversible discrete Moser-Veselov

(DMV) algorithm for application to the free rigid body problem. The problem

is preprocessed by generating a modified problem using the method of modified

equations, to which the DMV method is applied. The result is a higher-order

version of the DMV algorithm. An implementation of the DMV algorithm

using quaternions is described and a Maple script for the computation of the

quantities required for the preprocessing is provided.
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Chapter 4

Connections Between

Local Error and the Defect

The error quantity that is usually of central interest in the numerical solution

of ODE is the global error E(t), where

E(tn+1) = yn+1 − y(tn+1).

It is generally not possible to control the global error directly (see, e.g.,

Shampine & Watts, 1976, 173). Instead the usual strategy is to try to control

the LEPS ǫ(t), where

ǫ(tn+1) = yn+1 − zn(tn+1),

where we recall that zn(t) is the local exact solution to (1.1) with initial con-

dition y(tn) = yn. The basic rationale for the use of local error control as an

indirect control on the global error is the following bit of reasoning, due to

Shampine & Watts (1976). The global error can be written as

E(tn+1) = [yn+1 − zn(tn+1)] + [zn(tn+1)− y(tn+1)].
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The first term in brackets is just the local error and the second term is a

quantity that depends on the stability of the differential equation, since its

size depends on how much the integral curves of (1.1) starting at yn and y(tn)

spread apart by t = tn+1. In particular, for small step-sizes the second term is

approximately

[I + hnJn] · E(tn),

where hn = tn+1 − tn and Jn = Jf(tn, yn). Thus, the expression for the global

error breaks up into a term depending on the numerical method used and a

term independent of the numerical method, depending only on the stability

of the equation itself, since the eigenvalues of the Jacobian determine the

(linear) stability properties of the equation. Attempting to control the local

error approximately controls the global error if the equation is not dynamically

unstable. For such cases, if the local error begins to grow for a given step-size,

a method is able to detect the developing numerical instability and compensate

by reducing the step-size in order to keep the method stable. For equations

with positive Lyapunov exponents, however, local error control loses its efficacy

since it is no longer possible to approximately control the global error by

reducing the step size. Defect control also fails to control the global error in

such cases, yet it can still be useful for reasons that are discussed in section

5.1.

An alternative to control of the local error is to attempt to control the

defect, as has been discussed in sections 2.1 and 3.1. In the case of the defect,

there is a rigorous result connecting the defect and the global error, viz., the

following theorem:
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Theorem 4.1 (Alekseev-Gröbner Theorem) Let y(t) be the exact solution to the

ODE (1.1) with initial condition y(t0) = y0 and let u(t) be the solution to the

modified equation

u̇(t) = f(u, t) + δ(u, t), u(t0) = y0,

with defect δ(u, t).1 Then, if ϕt,t0,f is the flow of the vector field f of the ODE

and
∂ϕt,t0,f

∂y0
is continuous, then

E(t) = y(t)− u(t) =

∫ t

t0

∂ϕt,τ,f (u(τ))

∂y0
δ(u(τ), τ)dτ. (4.1)

If the flow is not too sensitive to changes in the initial condition at the

various points along the solution u(t), then the partial derivative of the flow

can be approximated by the Jacobian Jf(u(t)), which can be calculated given

the solution u(t). The resulting expression for y(t) is the solution of the first

variational equation. In this case, since we know δ(t), we can compute an

estimate of the global error. This also provides a rationale for defect control,

since there is a rigorous result connecting the defect to the global error in a way

that is not particularly sensitive to the problem. As was the case for the local

error, the expression for the global error breaks up into two factors: δ(t), which

depends on the numerical method (and interpolant); and G(t, τ) =
∂ϕt,τ,f (u(τ))

∂y0
,

which depends only on the dynamical stability (conditioning) of the problem

itself.

1Note that unlike in section 2.1, where the defect was not a function of u, the Alekseev-
Gröbner theorem applies to the general case where the defect can depend on u.
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Defect control has an important feature that makes it more appealing than

local error control: since the defect can be viewed as a perturbation of the

initial equation, one is easily able to interpret what the control code is doing,

viz., it is ensuring that the modified problem actually being solved by the code

is ε-close to the specified problem, where ε is the specified tolerance.

Definition 4.2 (ε-Nearby Problems) Given the problem (1.1), ε > 0, and a

vector norm ‖ · ‖, a modified problem is ε-close, or ε-nearby, to (1.1) if there

is a function v(u, t) such that

u̇(t) = f(u, t) + εv(u, t),

where ‖v(u, t)‖ ≤ 1, i.e., if the defect δ(t) of the modified problem can be

expressed as δ(u, t) = εv(u, t), ‖v(u, t)‖ ≤ 1.

Then, when the problem is relatively stable, i.e., well-conditioned, one is able

to infer a small global error from a small defect. It remains the case, however,

that most variable step-size codes used for solving IVP in ODE control the

local error and not the defect. From a backward error point of view, we would

like to understand the success of local error control codes in terms of local

error control providing an indirect control of the defect. This motivates an

attempt to better understand the connection between the local error and the

defect.

There are a number of results connecting the local error and the defect

in the literature. Stewart (1970) shows that the defect and the LEPUS are

in a certain sense equivalent. This is accomplished by showing that, under
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reasonable assumptions on the structure of the error bound and assuming

maximum and minimum step-sizes hmax and hmin, the set of solution sequences

produced by LEPUS control codes with a given ∞-norm error bound on the

LEPUS contains the set of solution sequences produced by defect control codes

within a slightly smaller ∞-norm error bound on the defect, and vice versa.

Let L be a Lipschitz constant for the vector field f over the entire range of

integration [t0, T ]. Then the results establish that any solution sequence with

the LEPUS controlled to within ε can be interpreted as defect controlled to

within ε(1 + Lhmax). And any solution sequence with the defect controlled

to within ε can be interpreted as LEPUS controlled to within εeLh
+

min, where

h+min = T/N with N the number of steps. Thus, Stewart establishes that there

is a close connection between the LEPUS and the defect, and that for problems

for which L is not too large, which includes relatively stable non-stiff problems,

a LEPUS controlled code can be interpreted to be a defect controlled code with

only a slightly larger tolerance.

Note also that the connection Stewart makes is between the LEPUS and

the defect, not the LEPS and the defect. In a preliminary consideration of

how to develop a theory of variable step-size, variable method ODE solvers,

Stetter (1976) considers conditions under which ODE solvers achieve tolerance

proportionality, i.e., a relationship between the tolerance ε and global error

E(t) of the form

E(t) = w(t)ε+ o(ε), (4.2)

where w(t) and w′(t) are bounded on [t0, T ] and o(ε) is understood here to

mean a term numerically negligible compared to ε. He proves a theorem that
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shows that in order for ODE solvers to achieve tolerance proportionality, they

must control the LEPUS and not the LEPS. This theorem shows that equation

(4.2) being satisfied for all t ∈ [t0, T ] is equivalent to the condition that the

local errors ǫ(tn+1, ε) generated for a tolerance parameter ε are of the form2

ǫ(tn, ε) = v(tn+1, tn)hnε+ o(hnε), (4.3)

where v(t, τ) behaves like an integral mean over [τ, t] of a function independent

of ε and bounded on [t0, T ]. He proves this by first showing that the tolerance

proportionality condition (4.2) is equivalent to having an interpolant u(t) that

satisfies (1.3) with a defect

δ(t) = v(t)ε+ o(ε),

where v(t) is independent of ε and bounded for [t0, T ]. He then shows that

this condition is equivalent to the conditions of the theorem. One direction of

the required equivalence then follows from the fact that the Alekseev-Gröbner

theorem implies that the local errors are of the form (4.3) by taking

v(tn+1, tn) =
1

hn

∫ tn+1

tn

G(tn+1, τ)v(t)dτ.

The converse follows by interpolating the numerical solution using the inter-

polant

u(t) = zn(t) +

(

t− tn
hn

)

ǫ(tn+1, ε), t ∈ [tn, tn+1] (4.4)

2The o(hnε) term in this equation appears as o(ε) in (Stetter, 1976, 192), but Higham
(1991a, 461) point out the correction.
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and using the assumption that the maximum step-size is o(1) as ε becomes

small. Note that this interpolant is C0 but not C1. Thus, Stetter showed

that, asymptotically (as ε → 0), achieving tolerance proportionality is equiv-

alent to solving a nearby system of ODE, provided that the defect depends

linearly on ε in the asymptotic limit. He also shows that, asymptotically, con-

trol of the LEPUS does provide indirect control of the defect, and hence can

achieve tolerance proportionality of the global error. Stetter also shows that

by interpolating between grid points with the interpolant u(t)+o(ε), equation

(4.2) is satisfied for all t ∈ [t0, T ], i.e., this interpolant is sufficient for toler-

ance proportionality, and hence the relationship between the LEPUS and the

defect.

Higham (1991a) reformulates and clarifies the details of this result. In

the reformulation, he is able to point more clearly to limitations of Stetter’s

theorem. An important limitation is that the interpolant of the first deriva-

tive w′(t) of the function w(t) in equation (4.2) must be continuous. He also

emphasizes that because the theorem is an asymptotic result, it only applies

when ε is small, where what counts as small will depend on the problem at

hand. Thus, the result requires experimentation or elaboration in order to de-

termine if tolerance proportionality can be achieved by the ODE solvers used

in practice. Consideration of the details is beyond the scope of the present

work, but Higham (1991a) includes numerical experiments in this paper, and

also proves two corollaries, hinted at in Stetter (1981), that relate to practical

error control methods. The second corollary provides conditions under which

the solution sequences yn produced by RK methods using certain methods of
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error control (specifically LEPUS control, LEPS control with local extrapola-

tion, and defect control with an interpolant of higher order than the method)

when interpolated using the interpolant in (4.4) achieve tolerance proportion-

ality and the above mentioned relationship between the LEPUS and the defect.

Higham & Stuart (1998) apply these results of (Higham, 1991a) to the long-

time behaviour of systems where the vector field f has a special structure, viz.,

special kinds of dissipative, contractive and gradient systems.

Following an approach to using the method of modified equations suggested

by Babuska, Griffiths (1988) shows a manner in which controlling the LEPS

or the LEPUS are understood to be equivalent to minimizing a defect in the

L1 and L∞ norms, respectively. He consideres a predictor-corrector pair of

methods formed from forward and backward Euler. He supposes that the time

grid generated by the method is characterized by a continuously differentiable,

monotonically increasing function F : [t0, T ] → [0, 1] defined by tn 7→ n/N . It

follows that hn ≈ 1/(NḞ (tn)). He then selects a particular interpolant u(t)

generated from the local exact solution zn(t), so that u(t) has the property

that the defect δ(t) is equal to the LEPUS to leading order in hn. This then

enables him to consider the result of minimizing ‖δ(t)‖ by varying the function

F for different function norms ‖·‖ on [t0, T ]. He shows that minimizing ‖δ(t)‖1
with respect to F is equivalent to keeping the LEPS constant. If we let this

constant be ε, then if ε is held constant, it follows that, asymptotically, u(t)

satisfies the modified equation (1.3) such that ‖δ(t)‖1 = O(
√
ε). He also

shows that minimizing ‖δ(t)‖∞ is equivalent to keeping the LEPUS constant,

and that, by keeping the LEPUS at constant value ε, u(t) satisfies (1.3) with
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‖δ(t)‖∞ = O(ε). Griffiths points out that, although this result was proved for

a particular numerical method, the approach can be extended to higher order

methods and also shows how other criteria for the control of the local error

would behave.

These results serve to establish that controlling the LEPUS does control

a defect provided that the bound on the LEPUS is sufficiently small, where

what counts as small will depend on the particular problem. One limitation of

these results in practice, however, is that they all rely in one way or another on

the numerical solution being interpolated with the ‘ideal’ interpolant (4.4), or

something similar depending on the local exact solution zn(t) and the LEPS.

Because we can only estimate the LEPS and we do not have access to the

local exact solution, such interpolants can hardly be considered computable

in practice. Thus, we see that control of the LEPUS does control the defect

in the asymptotic regime where ε → 0, but this assumes that the defect is

computed using the ideal interpolant. Thus, provided that the tolerance on

the LEPUS is sufficiently tight, where what counts as tight will depend on

the problem at hand, the control of the LEPUS can be understood to be

controlling a defect, and so the numerics are tracking the exact solution to a

close to ε-nearby problem. In order to make the stronger claim that, under

the appropriate asymptotic conditions, the numerics actually find the exact

solution to a nearly ε-nearby problem, the defect that the control of the local

error controls must be computable. The current results on this issue all rely

on some sort of ideal interpolant.

Determining the conditions under which control of the local error controls
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the defect for arbirary interpolants, or even the interpolants used in practice,

is beyond the scope of the present work. We may, however, examine certain

aspects of the relationship between the LEPUS and the defect for arbitrary

interpolants by considering the general relationship between the local error

and the defect.

The general relationship between the local error and the defect is given by

an application of the Alekseev-Gröbner theorem. Applying the result to the

local problem (1.6), we have that

ǫ(t) = zn(t)− u(t) =

∫ t

tn

G(t, τ)δ(u(τ), τ)dτ, t ∈ [tn, tn+1].

Dividing both sides by hn = tn+1 − tn and setting t = tn+1, we see that

en+1 = e(tn+1) =
zn(tn+1)− u(tn+1)

hn
=

1

tn+1 − tn

∫ tn+1

tn

G(t, τ)δ(u(τ), τ)dτ.

(4.5)

Thus, in general, we see that the LEPUS e(tn+1) is equal to the time average

of the product of the defect and the function G(t, τ), which depends on the

conditioning of the problem, over the length of the step.

Consider an IVP (1.1). For sufficiently small time-steps, depending on the

severity of the nonlinearity, or simply asymptotically as h → 0, the local be-

haviour of this system near the point (yn, tn) is well described by the linearized

system

ẏ = Jny, y(t0) = y0.

where Jn = Jf (yn, tn). In this case, G(t, τ) = Jn and is constant, so it comes
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out of the integral in (4.5) and, treating the defect as an non-autonomous

perturbation of the system, we have that

e(tn+1) = Jn〈δ(t)〉, (4.6)

where 〈δ(t)〉 is the time-average of δ(t) over [tn, tn+1]. This result is interesting

from the point of view of stiff equations. Although there is no agreed upon

definition of stiffness, since it depends on the problem and the method, a

useful heuristic, that covers certain aspects of stiffness, is to think in terms

of large eigenvalues.3 If Jn has large eigenvalues, then it amplifies vectors in

certain directions significantly. We notice from equation (4.6) that even if the

average of the defect over the step has a small component in one any of these

directions, then, even if the defect is small, the local error could be very large.

The same is true of the global error in light of equation (4.1) and the fact

that a linear approximation to the derivative of the flow is the Jacobian of the

vector field. Thus, defect control would not work to control the global error.

This issue is actually better analyzed in terms of singular values. Let

Jn = UΣV ∗ be the singular value decomposition of Jn, so that

Jnvi = σiui,

where vi and ui are the column vectors of U and V and σi are the corre-

3Considering the idea of stiffness as being associated with the problem having two vastly
different time scales, a better heuristic is a large range of eigenvalues. In order to explain
why BEA fails on this kind of problem, however, it is the additional condition that the
largest eigenvalue is large that matters.
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sponding singular values. If δ(t) has a small component in the direction v1,

corresponding to the largest singular value σ1, then even though the defect

may be small, the local and global error could be quite large, depending on

the value of σ1. Thus, when the square roots of the eigenvalues of J∗
nJn are

very large, regarding the defect as a perturbation of the original ODE, then

the problem is stiff in a technical sense and we can expect backward error

analysis to fail on such a problem.

Considering the asymptotic regime (h→ 0) where we can equate G(t, τ) =

Jn, then equation (4.5) gives us other nice relations. For the remainder of this

chapter, all the norms are vector p-norms unless explicitly stated otherwise.

In this regime we have from (4.5) that

e(tn+1) =
Jn
hn

∫ tn+1

tn

δ(u(τ), τ)dτ. (4.7)

Taking the p-norm of both sides we find that

‖e(tn+1)‖ ≤ ‖Jn‖
hn

∥

∥

∥

∥

∫ tn+1

tn

δ(u(τ), τ)dτ

∥

∥

∥

∥

,

≤ ‖Jn‖
hn

∫ tn+1

tn

‖δ(u(τ), τ)‖dτ,

≤ ‖Jn‖ max
tn≤τ≤tn+1

‖δ(u(τ), τ)‖.

Therefore,

‖e(tn+1)‖p ≤ ‖Jn‖p max
tn≤τ≤tn+1

‖δ(u(τ), τ)‖p. (4.8)

Alternatively, using Hölder’s inequality with p and q conjugates, following the
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same line of reasoning as before, we have from (4.7) that

‖e(tn+1)‖1 ≤ ‖Jn‖p max
tn≤τ≤tn+1

‖δ(u(τ), τ)‖q. (4.9)

As a special case we have

‖e(tn+1)‖1 ≤ ‖Jn‖2‖δ(u(t), t)‖∞, (4.10)

where the ∞-norm here is now the function norm on the the interval [tn, tn+1].

The relations (4.8), (4.9), and (4.10) establish a relationship similar to the

previous results between the sizes of LEPUS and the defect in the asymptotic

limit hn → 0, and they hold for any interpolant u(t) of the numerical solution

used to compute the defect δ(t). They show that, asymptotically, control of

the defect indirectly controls the local error, provided that the norm of the

Jacobian is not too large. So for relatively stable non-stiff problems, for small

step-sizes or tight tolerances, the sizes of which will depend on the problem,

the local error can only be slightly larger than the defect. Although this does

not further the main desideratum of this chapter, since this is to clarify the

conditions under which control of the local error indirectly controls the defect,

these results do clarify the asymptotic relationship between the local error and

the defect for arbitrary interpolants.
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Chapter 5

Advantages of

Backward Error Analysis

5.1 Backward Error Analysis

on Chaotic Problems

It is usually thought that the main advantage of backward error analysis is

that when it is applied to a well-conditioned problem a small backward error

implies a small forward error (global error in the present context). Since

chaotic problems are ill-conditioned by definition, it would then be expected

that backward error analysis would be of little use on such problems. But this

all depends on what one is looking for in a numerical solution.

Because of the sensitivity to initial conditions exhibited by chaotic prob-

lems, small roundoff errors in the computation of values of the solution become

amplified and the global error can become large very quickly. Since this is the

case for any numerical method, the presence of truncation and roundoff error

makes the accurate computation of trajectories of chaotic systems over long

time periods impossible. An important point about models of chaotic physical
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systems that is not often emphasized, however, is that small physical pertur-

bations not taken into account by the model have the same effect. Thus, when

physical perturbations are present, the phase trajectory of the actual system

could quickly diverge from the phase trajectory of the specified model. This

basic point shows that the result of the presence of physical perturbations in

the system of interest is that the global error is often not a useful quantity to

consider when it comes to chaotic problems, and in such cases it would not

be even if we were able to solve models in exact arithmetic. Thus, for chaotic

problems, we generally must look for different kinds of information from a

numerical solution.

Since the main interest in the control of local error is as a means of con-

trolling the global error, it would appear that for chaotic problems a major

reason for the use of local error control is undermined. This is not so for defect

control, however, as Corless (1992b, 1994a) has argued. Control of the defect

to keep it small ensures that the numerical solution that one obtains is an

exact solution to a nearby problem, even on chaotic problems. The question

raised here, then, is: How useful are exact solutions to nearby problems when

the problem is so ill-conditioned that even tiny numerical errors grow expo-

nentially fast? Addressing this question requires that one rethink what one

should expect from a numerical solution to an ill-conditioned ODE problem.

This becomes quite a natural thing to do if one adopts a backward error point

of view.

Corless (1992b) makes the point that if the answer to a question depends

sensitively on the input then one is asking the wrong question. Taking this
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point, the result of the fact that physical and modeling error are always present

is that by trying to (indirectly) control the global error for a numerical solution

of a chaotic problem one is trying to answer the wrong kind of question. To

draw useful conclusions from the exact solution a nearby problem one requires

that some quantity of physical interest is stable under some relevant class of

perturbations. Corless refers to such a quantity as a ‘statistic,’ where the term

applies both to deterministic and stochastic systems (see Corless, 1992b, 324,

for details on this).

Definition 5.1 (Statistic) A statistic, in the present context, is some function s

that can depend on various parameters of a problem. For example, we could

have that s(u(t), y0, ε, v(t)), so that the statistic depends on variables such as

the exact solution u(t) to the perturbed problem, the initial condition y0, the

tolerance ε and the defect v(t).

The well-behavedness condition that is required for a statistic is something

akin to stability of solutions under perturbation of the initial condition, or

well-posedness, i.e., that there exists a unique solution to the problem that

depends continuously on the data. If there were no such well-behaved quantity

then no useful conclusions could be drawn from the numerical solution since the

presence of physical and modeling error will cause the model to give completely

different values than those possessed by the system being modeled. Corless

calls any system that has a well-behaved statistic a well-enough conditioned

problem.1

Definition 5.2 (Well-Enough Conditioning) A well-enough conditioned problem

1As an example of a problem that is not well-enough conditioned, Corless (1992b, 324)



87

is one that has a statistic that is stable under a (continuous) class of pertur-

bations that is relevant to the problem (1.1) being considered.

It is worth pointing out that if this statistic is chosen to be the global er-

ror, then the standard definitions of well-conditioning for ODE problems are

recovered.

A good example of what a useful statistic would be in the context of chaotic

problems is the largest Lyapunov exponent. Establishing that this is a statistic

is a difficult problem, however, since it requires proving a stability/continuity

result for the Lyapunov exponents of the system as the problem is varied.

Based on a computed solution one can estimate the Lyapunov exponents of

the modified problem exactly solved by the numerical method (as in, e.g.,

Dieci & Vleck, 2005), but without a continuity result for the Lyapunov expo-

nent this does not imply that the computed Lyapunov exponents are close to

those of the original problem. Nevertheless, Corless & Pilyugin (1995) showed

that if the original and modified problems are both generic, then provided that

the shadow distance ε is sufficiently small, solutions of the modified problem

(1.3) are traced by solutions of the original problem (1.1). This is suggestive

that for generic systems, the largest Lyapunov exponent is a stable statistic,

but it requires that we know that the original system is generic. If the original

considers the problem
ẏ(t) = |1− y2|, y(0) = 0,

which has exact solution y(t) = tanh t. Now, the modified problem ẏ = |1 − y2| + ε is
qualitatively different, since for ε > 0 the solution blows up in finite time, where the time
of the singularity is proportional to ln ε. The fact that the location of the singularity is not
fixed, and that ε must be exponentially small in order to have the singularity occur at a
finite range of times of interest, makes it unlikely that any meaningful statistic would be
well-behaved (Corless, 1992b, 324).



88

problem was not generic, even if chaotic behaviour was generic in the neigh-

bourhood surrounding the original problem, the original problem could fail

to be chaotic. This situation, however, is also addressed by a backward error

point of view for reasons we now consider.

Many models, particularly ones of complicated phenomena, are subject to

a significant amount of modeling error, so that the specified model is often

subject to significant idealization. Recall from chapter 1 that even though we

usually focus on the specified problem (1.1), the presence of modeling error

µ(t) means that this problem is actually

ẏ(t) = f(y, t) = g(y, t) + µ(t), y(t0) = y0.

Thus the system we are modeling is actually

ẋ(t) = g(x, t), x(t0) = y0. (5.1)

For example, models of galactic dynamics may not take into account to influ-

ence of exotic forms of dark matter that we do not know about, and it will

not take into account the motion of every star.2 Thus, the specified prob-

lem is actually a perturbation of the correct model of the system of interest.

And even if it were the case that µ(t) = 0, there will always be some degree

of physical error π(t) present. This non-autonomous perturbation could be

2It is to be recognized that, properly speaking, in general the system 5.1 will be a different
dimension than the original system 1.1. The manner of describing the modeling situation
here is not intended to be a rigorous representation of how modeling with ODE works, but
rather as sufficiently precise tool for the purpose of clarification.
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something like a violent storm on Jupiter that causes small perturbations to

its orbit and hence perturbs the motion of the bodies in the solar system ever

so slightly. Or it could be something more prosaic like the vibrations from a

nearby freeway affecting a laboratory experiment. In any case, the presence

of perturbations means that the actual physical situation is described by

ẋ(t) = g(x, t) + π(t), x(t0) = y0.

Also, since perturbations can be quite different in different contexts, it is really

an entire range of problems of this form that are to be understood as describing

the system of interest.

From this point of view, then, every ODE model is a modified version

of a correct model of the system of interest, even though the modification

may be extremely small. This shows that the specified model is usually not

so specially situated that conclusions about the actual physical system being

modeled have to be drawn from it. We also see from this that in every con-

sideration of problems (1.1) we must be mindful of how small perturbations

affect the problem. The basic insight here for chaotic problems, then, which

Corless (1992b) attributes to Enright, is that the result of the omnipresence

of physical and modeling error is that a problem is chaotic in a practical sense

if nearby problems have positive Lyapunov exponents. Thus, the use of BEA

enables us to conclude that the presence of chaotic behaviour in the numerical

solution of models of real world systems provides evidence that the system

being modeled exhibits chaotic behaviour. In cases where modeling error is
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significant, so that it is not clear that the model describes the behaviour of a

real system, even if the system as posed does not have positive Lyapunov expo-

nents, this practical definition still applies. For example, there is a significant

degree of idealization involved in the derivation of the Lorenz equations from

the equations of fluid dynamics, so it is not clear that the Lorenz equations

describe the behaviour of any real system. And though we do not have a proof

that the Lorentz equations are chaotic, the presence of chaos in simulations of

the Lorenz equations nevertheless shows that the Lorenz system is chaotic in

a practical sense (Corless, 1992b, 332-33).

Turning to think of the effect of numerical error, recall that the numerical

error ν(t) = φ(t) + τ(t) introduced in the numerical solution of ODE can be

viewed as another form of perturbation of the model (5.1). Moreover, it is

often the case that the numerical error can be made smaller in norm than the

largest sources of physical error. We usually have that ‖φ(t)‖ ≈ 10−15‖f‖,

provided that the subroutines we use to evaluate functions are numerically

stable, so that we will usually have ‖φ(t)‖ ≪ ‖π(t)‖ for the largest sources of

physical error. And with high-order numerical methods and tight tolerances

we will usually have that ‖τ(t)‖ ≪ ‖π(t)‖ for the largest sources of physical

error. Thus, in cases of careful modeling and computation, the physical error

will dominate the other sources of error so that the numerics are modifying

the problem much less than the physical world is. The insight to be gained

from this, then, is that if the numerical perturbations are small compared to

reasonable physical perturbations and if the system is well-enough conditioned,

i.e., the quantities of interest are sufficiently stable under perturbation, then
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one can get just as much insight from the problem exactly solved by the

numerics as one would obtain from the exact solution to the originally specified

problem.

As a result of this, the presence of chaos in numerical simulations shows

that there are chaotic problems in both the neighbourhood of the specified

problem and the range of problems corresponding to the system of interest.

This shows how Enright’s practical notion of chaos can be inferred from the

presence of chaos in numerical simulations. From a technical point of view, this

can be see to imply that if chaotic behaviour is generic in a neighbourhood

of the specified problem, then the system is chaotic in this practical sense,

since, in this case, there are chaotic problems arbitrarily close to the specified

problem. At least this is so unless the original problem is non-generic and

somehow all physical perturbations push this problem onto other non-generic

problems. In this case it really is the behaviour of non-generic problems that

matters. However, that physical perturbations can be both continuous and

stochastic makes this possibility seem unlikely. Turning things around, it is

also possible that the numerical perturbations push the original problem onto

non-generic problems. In this case the behaviour observed from the results of

numerical simulations could be non-generic, so that chaos in the simulation

may not imply chaos in the system. Although it is difficult to determine how

likely this possibility is, it does not appear to be an unreasonable possibility

since all numerical perturbations are the result of discretization of continuous

problems, which make them a quite special kind of perturbation (cf. Corless,

1992a).
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It is worth noting that though we have been focusing on the issue of gener-

icity in the consideration of chaotic problems, similar considerations will apply

when the statistic of interest is something other than the largest Lyapunov ex-

ponent. In such a case, Enright’s notion of ‘chaotic in a practical sense’ would

translate into ‘well-enough conditioned in a practical sense,’ viz., a problem

would be well-enough conditioned in a practical sense with respect to some

statistic s if s is sufficiently stable in a neighbourhood of the specified problem.

In this way the behaviour of s in numerical solutions can be understood to

give us evidence for how s behaves in the system being modeled.

Even though a small defect means that one has a high quality solution even

in the case of well-enough conditioned chaotic problems, there are other issues

that we must consider if we really are to gain as much insight from the exact

solution to the modified problem as we would get from the exact solution of

the specified one. Aside from the smallness of the defect and well-enough con-

ditioning, we must also consider whether the perturbation introduced by the

defect is physically reasonable and what effect typical physical perturbations

will have on the problem. These are issues that must be addressed not only for

all kinds of BEA, but also any kind of error analysis. It is important for a full

error analysis to examine how physically reasonable perturbations affect the

model in question. Corless (1992b, 325) mentions tools for dealing with this

question, such as the first variational equation and perturbation theory. This

raises issues for qualitative analysis methods of systems of ODE. If one is using

such methods to gain insight into the dynamics, then one must be careful that

the invariant manifolds of the specified system are stable both under physical



93

perturbations and the perturbations introduced by the numerics. Although

this is a delicate issue (Corless, 1992b, 325), it does not raise any problems

specifically for BEA since this is a serious concern for any kind of error anal-

ysis. Adequately addressing the issue of whether the perturbations due to

numerical error can reasonably regarded as physical is required to ensure that

the perturbation from the defect really can be treated on an equal footing with

physical perturbations. Since this issue applies to all kinds of BEA and is not

specific to chaotic problems, we will pospone further consideration of this until

the following section.

An issue that is worth discussing here is what conclusions can be drawn

from the structure of the defect. The structure of the defect can actually be a

source of insight. Corless (1994a, 18-20) showed that the method of modified

equations can be used to explain the structure of the defect of the solution to

the Lorenz equations produced by the fixed time-step forward Euler method.

For chaotic values of the parameters in the Lorenz equations and following the

solution on the attractor, it was found that the defect has a similar structure

to that of the Lorenz mask. This shows that there are correlations between the

defect and the solution. Corless explained the correlation using the method

of modified equations to show that the first term in the modified equation

accounts for over 99.5% of the size of the defect.
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We perform a similar kind of analysis here on the Rössler system

ẋ = −y − z,

ẏ = x+ ay,

ż = b+ z(x− c),

solved using the defect-controlled Euler method ode1d. We let the parameters

take the chaotic values a = 0.4, b = 2 and c = 4. Solving this using ode1d

with the tolerance set to ε = 10−1 we obtain the solution plotted in figure

5.1. We can interpolate the solution using the Matlab method pchi on

each component of the solution, thereby obtaining a vector of piecewise cubic

Hermite interpolants that interpolates the entire solution. Since pchi also

returns the derivative of the interpolants, this enables us to compute the defect.

The result is plotted in figure 5.2(a). We see that the defect has a lot of

structure and, as was found by Corless for the fixed time-step Euler method,

it mimics the behaviour of the solution. To make the structure more clear,

using the same defect, an estimate of the maximum value of the defect over

each integration interval is calculated. Using a line plot, as in figure 5.2(b), it

becomes clear that the structure in the defect is indeed mimicing the structure

of the solution in 5.1. Slightly extending the method of Corless (1994a), this

can be partially accounted for using the method of modified equations.

Recall from section 2.3 that using the method of modified equations, the

numerical solution to a system ẏ = f(y, t) using a fixed time-step Euler method
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Figure 5.1: The Rössler system solved using ode1d.

is a second-order solution to

ẏ =
(

I − h
2
Jf(y)

)

f(y), (5.2)

This analysis relies on the method being used having a fixed time-step. To

apply this method for a variable step method we must rescale the time so that

the times are equally spaced. Let this time rescaling be given as t = F (θ),

and for convenience choose the fixed step-size to be 1. Using this rescaling, we

transform the original system to the system

dx

dθ
= (−y − z)F ′(θ),

dy

dθ
= (x+ ay)F ′(θ),

dz

dθ
= [b+ z(x− c)]F ′(θ).
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Figure 5.2: The defect of the ode1d solution to the Rössler system computed using pchi.

Letting the original Rössler system be given by ẏ = f(y), we may then conclude

that our ode1d solution is a second-order solution to

ẏ =
(

I − 1
2
F ′(θ)Jf (y)

)

f(y), (5.3)

since h = 1. Thus, letting δ(t) be the original defect, shown in figure 5.2,

the term δ1(t) = −1
2
F ′(θ(t))Jf(y)f(y) provides a first order approximation to

δ(t). To compute the Jacobian of this system we must be able to compute the

derivative of the function F (θ). Since we only know the value of F at the grid

points, we use forward differences to estimate the derivative at the beginning

of each time-step. Based on this, the values of F ′(θ) between grid points can

be evaluated using the built-in Matlab function pchip.

Now, following the method of (Corless, 1994a) we can interpolate the ode1d

solution using pchi by matching the derivatives from (5.3), and not those of

the equation ẏ = f(y). We can then compute the defect δ2(t) by substituting
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this interpolant back into (5.2). The result of this is that we have the exact

solution to

ẏ =
(

I − 1
2
F ′(θ(t))Jf(y)

)

f(y) + δ2(t), (5.4)

where δ2(t) = ε2b(t) for some function b(t). We wish to determine whether

‖b(t)‖∞ / 1. The result of the computation of δ2(t) is given in figure 5.3(a).

Estimating the maximum defect on each integration interval as before, we

obtain the plot in figure 5.3(b). We notice the interesting result that the

maximum value of the z-component of the defect of the modified equation is

about the same as for the defect of the original equation, i.e., |b(t)| 6/ 1 for this

component, but that the x and y components are of the order of the tolerance

ε = 10−1, so that |b(t)| / 1 for these components. Thus, δ1(t) is accounting for

a large part of the defect δ(t) of the original equation. This partially explains

the correlations found in figure 5.2. Looking carefully at figure 5.3 it appears

that there is structure surrounding the origin similar to that seen in figure 5.2,

but surrounded by noise. A more careful estimate of the maximum value of

the defect over each time-step may reveal this structure more clearly. This also

raises the question of whether the third-order modified equation can account

for the large z-component of δ2(t), which we will not address here.

5.2 Backward Error Analysis and Modeling

We have seen that the omnipresence of physical and modeling error means

that the specified model problem is always subject to perturbations, so that a

proper error analysis of any model must include an examination of the effects

of perturbations on the model and its solutions. Because BEA allows numer-
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Figure 5.3: The defect of the ode1d solution to the Rössler system computed using pchi.

ical error to be treated as a perturbation in the same way as physical and

modeling error, there are strong reasons for regarding the solution provided

by a numerical method as the exact solution to a nearby problem nearby that

is just as valid as the solution to the original one, provided that the numerical

defect is small. As was pointed out, this is so provided that the problem is

well-enough conditioned and provided that the perturbation can reasonably

be regarded as physical. We take up this last issue in this brief concluding

section.

An important consideration in all forms of BEA for ODE is the justification

of the comparison of numerical with physical and modeling error. First of all,

the comparison depends on the norm chosen to measure the various errors and

care must be taken to select the appropriate norm for the problem at hand.

But more importantly, as has been pointed out, e.g., by Hayes & Jackson

(2005), it also matters how the numerical error affects the problem qualita-
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tively. Numerical error, i.e., discretization and roundoff error, may produce

a perturbation in the problem that is not physically reasonable. Hamiltonian

systems are a classic example, since roundoff, or numerical methods that do

not preserve the symplectic structure of the flow, introduce spurious dissi-

pation (or accumulation) of energy when computing phase trajectories for a

conservative system. Other kinds of distortion are also possible, for example

Hayes & Jackson (2005, 300-301) point out that the numerical error may also

introduce nonphysical energy transport, even if the energy is conserved. Thus,

it is an important matter, and one underemphasized in the literature, to con-

sider whether the qualitative features of numerical error warrant a comparison

to physical and modeling error.

The point to be made here is that many of the effects of roundoff and

truncation error can be reasonably regarded as physical as long as the effects

are small. Small amounts of dissipation do constitute a reasonable physical

perturbation because of the system interacting with its environment, and small

amounts of energy transport are reasonable due to either physical or modeling

error. For example, if the vector field of the model is slightly different than

the vector field of the system being modeled then energy could distribute itself

differently in the actual system than what occurs in the specified model. Often

when these effects are large it is because certain key structural features of the

equations defining the model are not preserved by the numerical method being

used. This issue is addressed by the development of specialized geometric

methods for certain kinds of problems, which enable numerical solutions that

better reflect the physical structure of the system being modeled. This can
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significantly reduce the distortions of numerical error, with the consequence

that effects like spurious dissipation of energy are significantly reduced. Thus,

the use of the method of modified equations, central in the development of

geometric numerical methods, addresses the issue of whether numerical error

can be regarded as physical. Therefore, the point of view of BEA, that valid

numerical solutions are exact solutions to nearby problems that are just as valid

as the solution to the specified problem, extends to the method of modified

equations. It also extends to shadowing methods, since a perturbation of the

initial conditions of a problem, provided that it is small, is amounts to the

same effect as measurement error in the initial value of a dynamical system,

which is always present to some degree. Thus, provided that one is using the

kind of backward error analysis appropriate for the problem at hand, or some

appropriate combination of them, BEA methods for ODE provide a strong set

of tools for obtaining exact solutions to problems that are just as valid as the

exact solution to the problem originally posed.

We can summarize the main point of this chapter in the following way. The

omnipresence of physical and modeling error when mathematical models are

used to describe, explain and predict real world phenomena, has the effect that

the neighbourhood of the specified problem in the space of problems one is

considering contains a variety of valid problems for the modeling task at hand.

In the case where the problem one is considering is well-enough conditioned,

and the quantities of interest vary continuously in that neighbourhood, then

the entire neighbourhood contains valid problems. A central point, however,

is that which nearby problems are truly valid is determined by the problems
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that physical and modeling perturbations push the specified problem onto.

Thus, it is also these perturbations that determine which problems are just

as valid as the specified one. So, it is only when the problem is well-enough

conditioned, and the numerical error can reasonably be regarded as modeling

the effects of physical error, that the numerical solution can be regarded as the

exact solution to a problem that is just as valid as the one originally posed. It

is worth pointing out that the latter condition may be relaxed in the case of

a well-enough conditioned problem where the numerical error is known to be

many orders of magnitude smaller than the dominant sources of physical error,

but not in cases where the numerical error is not negligible compared to such

sources of physical error. This section made the case that with the selection of

numerical methods appropriate for the problem at hand, the numerical error

can reasonably be understood as modeling the effects of physical error, and so

if the problem is well-enough conditioned then the numerical solution can be

understood to be just as valid as the exact solution to the problem originally

posed.

There is a subtle and difficult issue that arises, however, when we do not

know that the problem is well-enough conditioned, since it is possible that the

problems solved by the numerics have different qualitative behaviour than not

only the specified problem but also the problems in the neighbourhood that

physical and modeling perturbations push this problem onto. Two responses

to this issue when it cannot be analyzed rigorously, are the following. One is

that Enright’s notion of a problem that is ‘chaotic in a practical sense’ should

generalize to a problem that is ‘well-enough conditioned in a practical sense,’ so



102

that when the numerics survey a sample of problems in the neighbourhood of

the specified problem and the quantities of interest appear to be well-enough

conditioned, this gives us evidence that the problem is indeed well-enough

conditioned. The second is that because physical perturbations can be both

continuous and stochastic, it seems quite likely that physical perturbations

cover a large range of the problems in the neighbourhood surrounding the

specified problem. So, if the numerical error can reasonably thought to be

modeling the effects of physical error, then we have good reason to think that

the problems being solved by the numerics are included in the set of problems

accessed by physical perturbations. Thus, in this case we have good reason

to think that well-enough conditioning observed from the numerical solutions

implies well-enough conditioning in the system being modeled. Thus, we may

conclude that when well-enough conditioning is observed when a variety of the

problems in the neighbourhood of the specified problem are solved numerically,

and when the numerical error can reasonably be understood to be modeling

the effects of physical error, there are strong reasons to believe two things:

that the numerical solution is solving a problem that is just as valid as the one

originally posed; and that insights drawn from the numerical solutions provide

insights into the behaviour of the actual system being modeled.
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Chapter 6

Conclusion

The three main approaches to BEA for ODE provide a powerful set of tools for

the analysis of the error introduced in numerical solution of ODE problems.

The analysis and control of the defect, which is computable in practice from a

suitable interpolant, enables one to understand the numerical solution as the

exact solution of a nearby ODE problem; provided that the defect is small, then

we are assured that the numerical solution is a valid one. We have seen how

the omnipresence of physical and modeling error enables us to understand the

numerical solution as being just as valid as the exact solution to the problem

originally posed, provided that the numerical perturbations can reasonably be

regarded as physical, and that this is possible in most cases.

Although the analysis of the defect is legitimate in general, there are some

special cases where we are interested in solutions to the specified problem and

not a modified one. The shadowing results enable us to work with such a case

by providing tools to establish when a numerical solution is shadowed by an

exact solution with a modified initial condition. Since in practice, the initial

condition is only known within some error bounds, these deep and powerful
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results enable proof that the numerical solution tracks an exact one that is just

as valid as the solution with the specified initial condition provided that the

initial condition of the shadowing solution is sufficiently close to the specified

initial condition.

The method of modified equations has a number of important applications.

It is a useful tool for understanding the behaviour of numerical methods by

enabling the derivation of a modified problem that has solutions that the nu-

merical solution follows more closely than the solutions to the original problem.

It is also an important tool in the analysis and construction of geometric nu-

merical methods for use on special problems where the flow of the specified

equation has geometric properties that we want the numerical solution to pre-

serve. And we have seen how it works well in conjunction with defect analysis

in order to explain the structure of the defect.

The methods of BEA for ODE go beyond simply the analysis of numerical

error. We may see that not only do the methods of BEA for ODE enable

one to understand a numerical solution as the exact solution to a nearby

problem, together they provide one with the flexibility to decide what kind

of nearby problem the numerical solution solves. Analysis of the defect is

the most flexible and multipurpose tool of the three, since it can be applied

to any problem using any numerical method, and the control of the defect

ensures that one has a valid solution. Shadowing results enable one to hold

the equation fixed and understand the numerical solution as tracking a solution

of the original equation. And the method of modified equations enables one to

have a distinct amount of control over what kind of problem the numerics solve
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as a result of its role in the construction of geometric numerical integration

methods.

We have also seen that, in keeping with the backward error point of view,

they provide an important source of insight into the value of a numerical

solution. They reduce the analysis of numerical error to an analysis of the effect

of perturbations of the problem and or the data, enabling one to understand a

numerical solution as an exact solution to a perturbed problem. Not only does

this provide a clear and general way of understanding the effects of numerical

error, the omnipresence of modeling and physical error has the effect that there

is an entire neighbourhood of valid problems around the originally specified

one. So, the use of BEA methods for ODE enables one to provide distinct

criteria for validity, e.g., that the defect is smaller than the largest sources of

physical error, and consequently enables one to understand why a numerical

solution is valid. In addition, as was argued in chapter 5, if the perturbations

introduced by numerical error can be understood as modeling the effect of

physical perturbations, then one is able to conclude that a numerical solution is

just as valid as the exact solution to the problem originally posed. This shows

not only that BEA for ODE is a powerful tool for the analysis of numerical error

in the context of mathematical modeling, it also shows how computation can be

understood, as it ought to be, as just another stage of the modeling process, not

simply a device for getting approximate solutions from mathematical models.
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Appendix A

Matlab Code

A.1 ode1d

function [tout,yout] = ode1d(F,tspan,y0,arg4,varargin)

%ODE1D Solve non-stiff differential equations using a defect-controlled

%Euler method

%

%This code is a modified version of ODE23TX, from Numerical Computing

%with MATLAB by Cleve Moler, a textbook version of ODE23, written by

%Mark W. Richest and Lawrence F. Shampine

%

% ODE1D(F,TSPAN,Y0) with TSPAN = [T0 TFINAL] integrates the system

% of differential equations dy/dt = f(t,y) from t = T0 to t = TFINAL.

% The initial condition is y(T0) = Y0.

%

% The first argument, F, is a function handle or an anonymous function

% that defines f(t,y). This function must have two input arguments,

% t and y, and must return a column vector of the derivatives, dy/dt.

%

% With two output arguments, [T,Y] = ODE1D(...) returns a column

% vector T and an array Y where Y(:,k) is the solution at T(k).

%

% With no output arguments, ODE1D plots the emerging solution.

%
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% ODE1D(F,TSPAN,Y0,RTOL) uses the relative error tolerance RTOL

% instead of the default 1.e-3.

%

% ODE1D(F,TSPAN,Y0,OPTS) where OPTS = ODESET(’reltol’,RTOL, ...

% ’abstol’,ATOL,’outputfcn’,@PLOTFUN) uses relative error RTOL instead

% of 1.e-3, absolute error ATOL instead of 1.e-6, and calls PLOTFUN

% instead of ODEPLOT after each successful step.

%

% More than four input arguments, ODE1D(F,TSPAN,Y0,RTOL,P1,P2,...),

% are passed on to F, F(T,Y,P1,P2,...).

% Initialize variables.

rtol = 1.e-3;

atol = 1.e-6;

plotfun = @odeplot;

if nargin >= 4 & isnumeric(arg4)

rtol = arg4;

elseif nargin >= 4 & isstruct(arg4)

if ~isempty(arg4.RelTol), rtol = arg4.RelTol; end

if ~isempty(arg4.AbsTol), atol = arg4.AbsTol; end

if ~isempty(arg4.OutputFcn), plotfun = arg4.OutputFcn; end

end

t0 = tspan(1);

tfinal = tspan(2);

tdir = sign(tfinal - t0);

plotit = (nargout == 0);

threshold = atol / rtol;

hmax = abs(0.1*(tfinal-t0));

t = t0;

y = y0(:);

% Initialize output.

if plotit

plotfun(tspan,y,’init’);

else

tout = t;

yout = y.’;

end
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% Compute initial step size.

k0 = F(t, y, varargin{:});

r = norm(k0./max(abs(y),threshold),inf) + realmin;

h = tdir*0.8*rtol/r;

% The main loop.

while t ~= tfinal

%hmin = 5e7*eps*abs(t);

hmin = 16*eps*abs(t);

if abs(h) > hmax, h = tdir*hmax; end

if abs(h) < hmin, h = tdir*hmin; end

% Stretch the step if t is close to tfinal.

if 1.1*abs(h) >= abs(tfinal - t)

h = tfinal - t;

end

% Attempt a step.

tnew = t + h;

ynew = y + h*k0;

k1 = F(tnew, ynew, varargin{:});

% Estimate the error.

e = 3*abs(k1-k0)./4;

err = norm(e./max(max(abs(y),abs(ynew)),threshold),inf) + realmin;

%err = norm(e./max(abs(y),abs(ynew)),inf) + realmin;

% Accept the solution if the estimated error is less than the tolerance.

if err <= rtol

t = tnew;

y = ynew;

if plotit
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if plotfun(t,y,’’);

break

end

else

tout(end+1,1) = t;

yout(end+1,:) = y.’;

end

k0 = k1; % Reuse final function value to start new step.

end

% Compute a new step size.

h = h*min(5,0.8*rtol/err);

% Exit early if step size is too small.

if abs(h) <= hmin

warning(’Step size %e too small at t = %e.\n’,h,t);

t = tfinal;

end

end

if plotit

plotfun([],[],’done’);

end

A.2 theta2

function [tout,yout] = theta2(F, DF, tspan, y0, h, theta, tol, Nmax)

%THETA2 - Fixed time two stage theta method for solving single or

% systems of first-order ODE; Newton’s method is used to solve the

% implicit equation which arises at each time step - For theta = 0 the

% method is equivalent to forward Euler, for theta = 1 the method is

% equivalent to backward Euler, and for theta = 0.5 the method is

% equivalent to the implicit trapezoidal rule.

%

%This code is a modified version of ODE23TX, from Numerical Computing

%with MATLAB by Cleve Moler, a textbook version of ODE23, written by
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%Mark W. Richest and Lawrence F. Shampine

%

% THETA2(F,DF,TSPAN,Y0,H,TOL,NMAX) with TSPAN = [T0 TFINAL] integrates

% the system of differential equations dy/dt = f(t,y) from t = T0 to

% t = TFINAL. The initial condition is y(T0) = Y0.

%

% The first argument, F, is a function handle or an anonymous function

% that defines f(t,y). This function must have two input arguments,

% t and y, and must return a column vector of the derivatives, dy/dt.

%

% The second argument, DF, is a function handle or an anonymous function

% that defines the Jacobian Df(t,y) of f(t,y). This function must have

% two input arguments, t and y, and must return a matrix with the

% derivatives, (df_i/dy_j)(t), as elements.

%

% The fifth argument, H, is the fixed time step of the method

%

% The sixth argument, TOL, is convergence tolerance applied to Newton’s

% method at each time step

%

% The last argument, NMAX, is the maximum number of iterations of

% Newton’s method to be performed at each time step

%

% With two output arguments, [T,Y] = THETA2(...) returns a column

% vector T and a column vector Y where Y(k) is the solution at T(k).

%

% With no output arguments, THETA2 plots the emerging solution.

%

% Dependencies:

%

% When applied to a system of equations, this routine makes use of

% MATLAB’s backslash operator to solve a linear system

plotfun = @odeplot;

t0 = tspan(1);

tfinal = tspan(2);

tdir = sign(tfinal - t0);

h=tdir*abs(h);

plotit = (nargout == 0);

t = t0;
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y = y0(:);

% Initialize output.

if plotit

plotfun(tspan,y,’init’);

else

tout = t;

yout = y.’;

end

% number of equations determines the method used

neqn = length(y0);

if (neqn == 1)

while t ~= tfinal

% Stretch the step if t is close to tfinal.

if abs(h) >= abs(tfinal - t)

h = tfinal - t;

end

% Compute a step

x = y;

for j = 1:Nmax

top = (x - y) - h * ((1 - theta)*F(t, y) + theta*F(t+h, x));

bot = 1 - h * theta * DF(t+h, x);

dx = top / bot;

x = x - dx;

if (abs(dx) < tol)

break

end

end

% Take a step.

y = x;
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t = t + h;

% Update output

if plotit

if plotfun(t,y,’’);

break

end

else

tout(end+1,1) = t;

yout(end+1,:) = y.’;

end

end

else

while t ~= tfinal

% Stretch the step if t is close to tfinal.

if abs(h) >= abs(tfinal - t)

h = tfinal - t;

end

% Compute a step

x = y;

%w0 = y0;

for j = 1:Nmax

Fx = (x - y) - h * ((1 - theta)*F(t, y) + theta*F(t+h, x));

DFx = eye(neqn) - h * theta * DF(t+h, x);

dx = -DFx\Fx;

x = x + dx;

if (max(abs(dx)) < tol)

break

end

end

% Take a step

y = x;

t = t + h;
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% Update output

if plotit

if plotfun(t,y,’’);

break

end

else

tout(end+1,1) = t;

yout(end+1,:) = y.’;

end

end

end

if plotit

plotfun([],[],’done’);

end

A.3 pchi

function [u,du] = pchi(tau,y,dy,t)

%PCHI Piecewise cubic Hermite interpolation.

% u = pchi(tau,y,dy,t) finds the continuously differentiable

% piecewise cubic Hermite interpolant P(x), with P(tau(j)) = y(j) and

% P’(tau(j)=dy(j), and returns u(k) = P(t(k)) and u’(k) = P’(t(k)).

% sort the data

n=length(tau);

% [tau,index]=sort(tau);

% y=y(index);

% dy=dy(index);

% Function and derivative values at interval end points

yn = y(1:n-1);

fn = dy(1:n-1);

yn1 = y(2:n);

fn1 = dy(2:n);
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% Find subinterval indices k so that x(k) <= u < x(k+1)

k = ones(size(t));

for j = 2:n-1

k(tau(j) <= t) = j;

end

% Evaluate interpolant

h = diff(tau);

s = (t - tau(k))./h(k);

u = (s-1).^2.*(2*s+1).*yn(k) + s.*(s-1).^2.*h(k).*fn(k) + ...

s.^2.*(-2*s+3).*yn1(k) + s.^2.*(s-1).*h(k).*fn1(k);

% Evaluate derivative of interpolant

du = 6*s.*(s-1)./h(k).*yn(k) + (s-1).*(3*s-1).*fn(k) + ...

2*s.*(-3*s+3)./h(k).*yn1(k) + s.*(3*s-2).*fn1(k);

end
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A. Cupillari (Ed.), Proceedings of the Canadian Society for History and

Philosophy of Mathematics, St John’s NL, June 2009, pp. 68-91.
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Talks **Peer-reviewed *Abstract Submission

1. ** with Nicolas Fillion, “Explanation and Abstraction: The Case of
Backward Error Analysis” Philosophy of Science Association Biennial
Meeting, Montréal, Québec, 4-6 November 2010.

2. * with Nicolas Fillion, “Modeling and Explanation: Lessons from Mod-
ern Error Theory.” Canadian Society for the History and Philosophy of
Science (CSHPS) Conference, Concordia University, Montréal, Québec,
28-30 May 2010.

3. with Nicolas Fillion, “A Step Forward with Backward Error,” PGSA
Colloquium Series, Department of Philosophy, The University of Western
Ontario, 12 March 2010.

4. * “The Conversion of Phenomena to Theory: Lessons on Applicability
from the Development of Electromagnetism.” Canadian Mathematical
Society/Canadian Society for the History and Philosophy of Mathemat-
ics (CMS/CSHPM) Conference, Memorial University, St. John’s, New-
foundland, 6-8 June 2009.

5. “From the World to Mathematics and Back Again: What We Can Under-
stand About Applicability from the Development of Electromagnetism.”
PGSA Colloquium Series, Department of Philosophy, The University of
Western Ontario, 25 March 2009.

6. * “Theories, Models and Representation: Lessons from Solid State Physics.”
Canadian Society for the History and Philosophy of Science (CSHPS)
Conference, University of British Columbia, Vancouver, British Columbia,
3-5 June 2008.

7. “Theories, Models and Representation: Lessons from Solid State Physics.”
PGSA Colloquium Series, Department of Philosophy, University of West-
ern Ontario, 12 March 2008.

8. “Interpretations of Probability in Quantum Mechanics.” PGSA Confer-
ence, Department of Philosophy, University of Waterloo, June 2005.
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• Critical Thinking (Full-Year Course), 2010–2011

Teaching Assistant

The University of Western Ontario 2003-2010

• Linear Algebra for Engineers (Half-Year Course), 2010
• Calculus (Half-Year Course), 2009
• Introduction to Philosophy (Full-Year Course), 2005–2006, 2007–2008
• Critical Thinking and Reasoning (Full-Year Course), 2003–2005

Research Assistant

The University of Western Ontario 2007-2010

• Robert Corless, Department of Applied Mathematics, 2009–2010
• Rotman Canada Research Chair in Philosophy of Science, 2009–2010
• The Joseph L. Rotman Institute for Science and Values, 2008-2009

Service

Conference Organization
• Logic, Mathematics, and Physics Graduate Philosophy Conference
Department of Philosophy, University of Western Ontario
2006: Co-organizer with J. Noland and D. MacDonald. Keynote Speaker:
Michael Hallett (McGill University)
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